24小时热门版块排行榜    

查看: 923  |  回复: 15
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

十点钟的咖啡

金虫 (正式写手)

[求助] iteration method for density equations_help_me 已有2人参与

hi there; I need some help with the following formulas
In the interaction picture.

     (1)

Then

   (2)

This equation can be iterated. and it is

   (3)



I can understand the eq.(2), but not the eq. (3).
Is anybody know how to get the equation (3). and why do we want to do such calculation?
回复此楼

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

walk1997

金虫 (著名写手)

引用回帖:
7楼: Originally posted by mshwangg at 2014-06-27 22:12:41
推导过程walk已经回答了。
然而,实在不懂你为何执着于这个方法。这个方法(Eq3)比欧拉方法(Eq2)多了一项。同意walk的说法,有限的Delta时,提高精度。也就是变种的欧拉方法。精度大约提高一到两个数量级。
既 ...

数值计算上
积分方法我想在多自变量时候可能会更有效率些
现在eq.2,3只有1个自变量t
如果是多自变量偏微分的话 不知道会是什么情况
可能硬解eq.1的效率不如2和3
尤其是偏微分方程中带本征谱的情况
--- 个人猜测 没实践过
8楼2014-06-27 22:24:54
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 16 个回答

mshwangg

至尊木虫 (正式写手)

【答案】应助回帖


感谢参与,应助指数 +1
十点钟的咖啡: 金币+1 2014-06-27 14:50:51
What your aim is to solve equation 1.
However, the statement in eq.2 and eq3 is only the method using Euler's formula. The precision of this method is the order of h^3 (h is the step).
In many cases, the h^3 precision is not sufficient for meeting your expectation.
In my opinion, it's better to use the Runge-Kutta method or use some software such as Matlab or Mathematica
2楼2014-06-27 14:27:15
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

十点钟的咖啡

金虫 (正式写手)

引用回帖:
2楼: Originally posted by mshwangg at 2014-06-27 14:27:15
What your aim is to solve equation 1.
However, the statement in eq.2 and eq3 is only the method using Euler's formula. The precision of this method is the order of h^3 (h is the step).
In many case ...

My equations are about the numerical solution. I just do not get the analytic solution (3). How can we derive the eq.(3) for (1) and (2)?
3楼2014-06-27 14:48:47
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

十点钟的咖啡

金虫 (正式写手)

引用回帖:
2楼: Originally posted by mshwangg at 2014-06-27 14:27:15
What your aim is to solve equation 1.
However, the statement in eq.2 and eq3 is only the method using Euler's formula. The precision of this method is the order of h^3 (h is the step).
In many case ...

This is not the Euler's method. There is always a fact of (1/2!) when we use the second order Euler' method.

and when I try to get the second derivative of the density operator. I get:

4楼2014-06-27 15:00:09
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
信息提示
请填处理意见