24小时热门版块排行榜    

查看: 638  |  回复: 4
本帖产生 1 个 翻译EPI ,点击这里进行查看

xffla

木虫 (正式写手)

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

Paulwolf

荣誉版主 (文坛精英)

非线性控制领域新人一枚

优秀版主优秀版主优秀版主优秀版主优秀版主

【答案】应助回帖

★ ★ ★ ★
RXMCDM: 金币+1 2014-06-09 07:46:52
xffla: 金币+3 2014-06-09 13:04:00
We compute the integral of the heights of each end of the beam, then get its zero order moment and one order moment, respectively. then we get the:
2楼2014-06-08 21:01:47
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

hengxing_001

银虫 (小有名气)

【答案】应助回帖

★ ★ ★ ★ ★ ★ ★
RXMCDM: 金币+1 2014-06-09 07:46:45
xffla: 金币+5, 翻译EPI+1 2014-06-09 13:03:15
xffla: 金币+1, 有帮助 2014-06-09 13:04:18
Integrating both sides of Eq. (1) along the height of the beam, and then taking the zeroth moment and first moment, respectively, we can derive,
3楼2014-06-09 05:59:50
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

peterflyer

木虫之王 (文学泰斗)

peterflyer


【答案】应助回帖

★ ★ ★ ★
xffla: 金币+4 2014-06-09 13:03:28
To Integrate both sides of equation (1) along the height direction of the beam, then chose the zero and first order moment respectively, we obtain
4楼2014-06-09 07:00:53
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

peterflyer

木虫之王 (文学泰斗)

peterflyer


【答案】应助回帖

★ ★ ★
RXMCDM: 金币+1 2014-06-09 07:46:36
xffla: 金币+2 2014-06-09 13:04:12
引用回帖:
4楼: Originally posted by peterflyer at 2014-06-09 07:00:53
To Integrate both sides of equation (1) along the height direction of the beam, then chose the zero and first order moment respectively, we obtain

To Integrate both sides of equation (1) along the height direction of the beam, then choose the zero and first order moment respectively, we obtain
5楼2014-06-09 07:03:14
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 xffla 的主题更新
信息提示
请填处理意见