24小时热门版块排行榜    

CyRhmU.jpeg
查看: 19257  |  回复: 314
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

烈冰若兰

木虫 (小有名气)


[资源] Biological Wastewater Treatment(Grady, C. p. Leslie Lim, Henry C.)第三版

第一次发帖,好多东西都还不太熟悉,图书信息可以在亚马逊上看到(http://www.amazon.cn/Biological- ... slie/dp/0849396794),目录有些长,大家多指教


基本信息
出版社: CRC Press Inc; 3rd Revised edition (2011年5月10日)
精装: 1022页
语种: 英语
ISBN: 0849396794
条形码: 9780849396793
商品尺寸: 25.4 x 18 x 5.1 cm
商品重量: 2 Kg
ASIN: 0849396794

图书描述
出版日期: 2011年5月10日
Following in the footsteps of previous highly successful and useful editions, Biological Wastewater Treatment, Third Edition presents the theoretical principles and design procedures for biochemical operations used in wastewater treatment processes. It reflects important changes and advancements in the field, such as a revised treatment of the microbiology and kinetics of nutrient removal and an update of the simulation of biological phosphorous removal with a more contemporary model. See what's new in the Third Edition: A chapter devoted to the description and simulation of anaerobic bioreactors Coverage of applications of submerged attached growth bioreactors Expanded discussion of modeling attached growth systems Increased information on the fate and effects of trace contaminants as they relate to xenobiotic organic chemicals A chapter on applying biochemical unit operations to design systems for greater sustainability The book describes named biochemical operations in terms of treatment objectives, biochemical environment, and reactor configuration; introduces the format and notation used throughout the text; and presents the basic stoichiometry and kinetics of microbial reactions that are key to quantitative descriptions of biochemical operations. It then examines the stoichiometry and kinetics used to investigate the theoretical performance of biological reactors containing microorganisms suspended in the wastewater. The authors apply this theory to the operations introduced, taking care to highlight the practical constraints that ensure system functionality in the real world. The authors focus on further biochemical operations in which microorganisms grow attached to solid surfaces, adding complexity to the analysis, even though the operations are often simpler in application. They conclude with a look to the future, introducing the fate and effects of xenobiotic and trace contaminants in wastewater treatment systems and examining how the application of biochemical operations can lead to a more sustainable world.

目录
Contents

Part I
Introduction and Background

Chapter 1
Classification of Biochemical Operations        3
The Role of Biochemical Operations        3
Criteria for Classification        5
The Biochemical Transformation        5
Removal of Soluble Organic Matter        5
Stabilization of Insoluble Organic Matter        6
Conversion of Soluble Inorganic Matter        6
The Biochemical Environment        7
Bioreactor Configuration        7
Suspended Growth Bioreactors        7
Attached Growth Bioreactors        8
Common “Named” Biochemical Operations        9
Suspended Growth Bioreactors        9
Activated Sludge        9
Biological Nutrient Removal          17
Aerobic Digestion          20
High-Rate Suspended Growth Anaerobic Processes          22
Anaerobic Digestion          23
Fermenters          24
Lagoons          24
Attached Growth Bioreactors          26
Fluidized Bed Biological Reactors          26
Rotating Biological Contactor (RBC)          26
Trickling Filter (TF)          27
Packed Bed          28
Integrated Fixed Film Activated Sludge Systems          29
Miscellaneous Operations          30
Key Points          30
Study Questions          30
References          30

Chapter 2
Fundamentals of Biochemical Operations          33
Overview of Biochemical Operations          33
Major Types of Microorganisms and Their Roles          34
Bacteria          35
Archaea          37
Eucarya          37


Microbial Ecosystems in Biochemical Operations        38
Aggregation and Bioflocculation        38
Aerobic/Anoxic Operations        41
Suspended Growth Bioreactors        41
Attached Growth Bioreactors        45
Anaerobic Operations        46
General Nature of Methanogenic Anaerobic          Operations        46
Microbial Groups in Methanogenic Communities and
Their Interactions        48
Anaerobic Ammonia Oxidation        50
The Complexity of Microbial Communities: Reality
versus Perception        50
Important Processes in Biochemical Operations        51
Biomass Growth, Substrate Utilization, and Yield        51
Overview of Energetics        51
Effects of Growth Environment on ATP                Generation        52
Factors Influencing Energy for Synthesis        55
True Growth Yield        56
Constancy of Y in Biochemical Operations        57
Maintenance, Endogenous Metabolism, Decay, Lysis,
and Death        58
Formation of Extracellular Polymeric Substances and Soluble Microbial Products        61
Solubilization of Particulate and High Molecular Weight
Soluble Organic Matter        62
Ammonification        62
Phosphorus Uptake and Release        62
The Modified Mino PAO Model        63
Filipe–Zeng GAO Model        66
Overview        66
Key Points        67
Study Questions        68
References        68

Chapter 3
Stoichiometry and Kinetics of Aerobic/Anoxic Biochemical Operations          75
Stoichiometry and Generalized Reaction Rate          75
Alternative Bases for Stoichiometry          75
Generalized Reaction Rate          78
Multiple Reactions: The Matrix Approach          79
Biomass Growth and Substrate Utilization          80
Generalized Equation for Biomass Growth          80
Half-Reaction Approach          80
Empirical Formulas for Use in Stoichiometric
Equations          83
Determination of fs          84

Aerobic Growth of Heterotrophs with Ammonia as the
Nitrogen Source        85
Aerobic Growth of Heterotrophs with Nitrate as the
Nitrogen Source        86
Growth of Heterotrophs with Nitrate as the Terminal Electron Acceptor and Ammonia as the Nitrogen Source        87
Aerobic Growth of Autotrophs with Ammonia as the
Electron Donor        88
Kinetics of Biomass Growth        90
Effect of Substrate Concentration on μ        91
The Monod Equation        91
Simplifications of the Monod Equation        93
Inhibitory Substrates        93
Effects of Other Inhibitors        94
Specific Substrate Removal Rate        95
Multiple Limiting Nutrients        95
Interactive and Noninteractive Relationships        96
Implications of Multiple Nutrient Limitation        97
Representative Kinetic Parameter Values for Major
Microbial Groups        99
Aerobic Growth of Heterotrophic Bacteria        99
Anoxic Growth of Heterotrophic Bacteria        100
Aerobic Growth of Autotrophic Bacteria        101
Maintenance, Endogenous Metabolism, Decay, Lysis, and Death        104
The Traditional Approach        104
The Lysis:Regrowth Approach        106
Endogenous Respiration with Storage        108
Soluble Microbial Product Formation        109
Solubilization of Particulate and High Molecular Weight
Organic Matter        110
Ammonification and Ammonia Utilization        111
Phosphorus Uptake and Release        112
Simplified Stoichiometry and Its Use        116
Determination of the Quantity of Terminal Electron
Acceptor Needed        116
Determination of Quantity of Nutrient Needed        117
Effects of Temperature        118
Methods of Expressing Temperature Effects        119
Effects of Temperature on Kinetic Parameters        120
Biomass Growth and Substrate Utilization        120
Maintenance, Endogenous Metabolism, Decay, Lysis,
and Death        121
Solubilization of Particulate and High Molecular
Weight Soluble Organic Matter        122
Phosphorus Uptake and Release        122
Other Important Microbial Processes        122
Key Points        122
Study Questions        125
References        127


PartII        theory: Modeling of Ideal Suspended Growth reactors

Chapter 4
Modeling Suspended Growth Systems          137
Modeling Microbial Systems          137
Mass Balance Equation          138
Reactor Types          138
Ideal Reactors          139
Continuous Stirred Tank Reactor          139
Plug-Flow Reactor          140
Batch Reactor          141
Nonideal Reactors          142
Residence Time Distribution          142
Experimental Determination of Residence
Time Distribution          144
Modeling Nonideal Reactors          145
Continuous Stirred Tank Reactors in Series Model          145
Axial Dispersion Model          147
Representation of Complex Systems          148
Key Points          148
Study Questions          149
References          150

Chapter 5
Aerobic Growth of Heterotrophs in a Single Continuous Stirred Tank Reactor Receiving Soluble Substrate          151
Basic Model for a Continuous Stirred Tank Reactor          151
Methods of Solids Separation and Wastage          152
Definitions of Residence Times          153
Format for Model Presentation          154
Alternative Methods of Expressing Biomass Concentrations
and Yields          157
Concentrations of Soluble Substrate and Biomass          158
Mass Balance on Biomass          158
Mass Balance on Soluble Substrate          161
Mass Balance on Biomass Debris          163
Total Biomass Concentration          163
Active Fraction          163
Observed Yield          164
Excess Biomass Production Rate, Oxygen Requirement, and
Nutrient Requirements          165
Excess Biomass Production Rate          165
Oxygen Requirement          166
Nutrient Requirement          166
Process Loading Factor or F/M Ratio          168
First-Order Approximation          169
Effect of Solids Retention Time on the Performance of a
Continuous Stirred Tank Reactor as Predicted by Model          170
Extensions of the Basic Model          173
Soluble, Nonbiodegradable Organic Matter in Influent          174
Inert Suspended Solids in Influent          174

Biomass in Influent          177
Biodegradable Solids in Influent          184
Effects of Influent Solids on the Performance of a Continuous
Stirred Tank Reactor as Predicted by Model          185
Effects of Kinetic Parameters          188
Biomass Wastage and Recycle          188
Garrett Configuration          188
Conventional Configuration          189
Membrane Bioreactors          190
Key Points          190
Study Questions          191
References          193

Chapter 6
Multiple Microbial Activities in a Single Continuous Stirred
Tank Reactor        195
International Water Association Activated Sludge Models        196
Components in Model No. 1        196
Reaction Rate Expressions in Model No. 1        199
Representative Parameter Values in Model No. 1        201
Model Nos. 2 and 2d        201
Model No. 3        203
Application of International Water Association Activated
Sludge Models        203
Effect of Particulate Substrate        204
Steady-State Performance        205
Dynamic Performance        207
Nitrification and Its Impacts        210
Special Characteristics of Nitrifying Bacteria        210
Interactions between Heterotrophs and Autotrophs        213
Effects of Nitrification in Bioreactors Receiving
Only Biomass        216
Denitrification and Its Impacts        216
Characteristics of Denitrification        216
Factors Affecting Denitrification        217
Multiple Events        221
Effects of Diurnal Variations in Loading        221
Intermittent Aeration        222
Closure        224
Key Points        225
Study Questions        226
References        227

Chapter 7
Multiple Microbial Activities in Complex Systems          231
Modeling Complex Systems          231
Representing Complex Systems          231
Significance of Solids Retention Time          233
Importance of the Process Loading Factor          234
Conventional and High Purity Oxygen Activated Sludge          235
Description          235

Effect of SRT on Steady-State Performance          235
Dynamic Performance          237
Variations within the System          240
Step Feed Activated Sludge          242
Description          242
Effect of SRT on Steady-State Performance          243
Dynamic Performance          245
Variations within the System          246
Contact Stabilization Activated Sludge          249
Description          249
Effect of SRT on Steady-State Performance          249
Dynamic Performance          251
Effects of System Configuration          253
Modified Ludzack–Ettinger Process          256
Description          256
Effect of SRT on Steady-State Performance          257
Effects of System Configuration          259
Four-Stage Bardenpho Process          264
Description          264
Effect of SRT on Steady-State Performance          264
Biological Phosphorus Removal Process          266
Description          266
Effect of SRT on Steady-State Performance          268
Effects of System Configuration          271
Factors Affecting the Competition between Phosphate
Accumulating and Glycogen Accumulating Organisms          274
Sequencing Batch Reactor          274
Description          274
Analogy to Continuous Systems          277
Effects of Cycle Characteristics          279
Key Points          282
Study Questions          284
References          286

Chapter 8
Stoichiometry, Kinetics, and Simulations of Anaerobic Biochemical
Operations        289
Stoichiometry of Anaerobic Biochemical Operations        289
Solubilization of Particulate and High Molecular Weight
Organic Matter        290
Fermentation and Anaerobic Oxidation Reactions        291
Methanogenesis        293
Physical and Chemical Processes in Anaerobic Systems        293
Acid–Base Dissociations        293
Gas Transfer        294
Precipitation        294
Kinetics of Anaerobic Biochemical Operations        295
Disintegration and Hydrolysis        295
Fermentation and Anaerobic Oxidation Reactions        296
Methanogenesis        299
Maintenance, Endogenous Metabolism, Decay, Lysis, and Death        299

Inhibition Factors in Anaerobic Biochemical Operations          299
Effects of Temperature on Kinetic Parameters          300
Anaerobic Digestion Model No. 1          300
Components of Anaerobic Digestion Model No. 1          300
Simulating the Anaerobic Digestion of Primary and Waste
Activated Sludge          300
Key Points          306
Study Questions          306
References          307

Chapter 9
Techniques for Evaluating Kinetic and Stoichiometric Parameters          311
Treatability Studies          311
Simple Soluble Substrate Model with Traditional Decay as Presented
in Chapter 5         313
Data to Be Collected          313
Determination of YH,T and bH          314
Determination of fD          316
Estimation of Inert Soluble COD, SI          317
Estimation of Monod Parameters, μˆ H and KS         317
Hanes Linearization          318
Hofstee Linearization          318
Lineweaver–Burk Linearization          319
Estimation of ke,T          320
Simple Soluble Substrate Model with Traditional Decay in the Absence
of Data on the Active Fraction          323
Data to Be Collected          323
Determination of bH          324
Determination of YH,T          325
Determination of SI, μˆ H, KS, and ke,T         325
Use of Batch Reactors to Determine Monod Kinetic Parameters for
Single Substrates          327
Intrinsic versus Extant Kinetics          327
Intrinsic Kinetics          328
Extant Kinetics          329
Complex Substrate Model with Lysis:Regrowth Approach to Decay as Presented in Chapter 6 (International Water Association Activated
Sludge Model No. 1)          330
Data to Be Collected          330
Characterization of Wastewater and Estimation of
Stoichiometric Coefficients          330
Determination of YH          332
Determination of Influent Readily Biodegradable
COD (SSO)          332
Determination of Influent Inert Particulate COD (XIO) ... 334
Characterization of Nitrogen-Containing Material          334
Estimation of Kinetic Parameters          335
Aerobic Growth of Heterotrophs          335
Decay of Autotrophs          335
Aerobic Growth of Autotrophs          336
Decay of Heterotrophs          337

Correction Factors for Anoxic Conditions, ηg and ηh          337
Hydrolysis and Ammonification          338
Order of Determination          339
Using Traditional Measurements to Approximate Wastewater
Characteristics for Modeling          339
Key Points          343
Study Questions          345
References          347
Part III        applications: Suspended Growth reactors
Chapter 10  Design and Evaluation of Suspended Growth Processes          353
Guiding Principles          353
Iterative Nature of Process Design and Evaluation          355
Basic Decisions during Design and Evaluation          357
Biochemical Environment          357
Solids Retention Time          359
Aerobic/Anoxic Systems          360
Anaerobic Systems          362
Items from Process Stoichiometry          363
Interactions among Decisions          364
Levels of Design and Evaluation          366
Preliminary Design and Evaluation Based on Guiding
Principles          366
Stoichiometric-Based Design and Evaluation          372
Simulation-Based Design and Evaluation          374
Effluent Goals versus Discharge Requirements          375
Optimization          375
Key Points          376
Study Questions          378
References          379
Chapter 11  Activated Sludge          381
Process Description          381
General Description and Facilities          381
Process Options and Comparison          382
Typical Applications          385
Factors Affecting Performance          387
Floc Formation and Filamentous Growth          387
Solids Retention Time          392
Mixed Liquor Suspended Solids Concentration          395
Dissolved Oxygen          395
Oxygen Transfer and Mixing          396
Nutrients          398
Temperature          399
Process Design          400
Overview          400

Factors to be Considered during Design          401
Selection of the Appropriate Process Option          401
Selection of the Solids Retention Time          402
Consideration of the Effects of Temperature          405
Consideration of the Effects of Transient
Loadings          406
Distribution of Volume, Mixed Liquor Suspended
Solids, and Oxygen in Nonuniform Systems          409
Design of a Completely Mixed Activated Sludge System—The General Case          409
Basic Process Design for the Steady-State Case          410
Consideration of the Effects of Transient Loadings          417
Conventional, High Purity Oxygen, and Selector Activated Sludge—Systems with Uniform Mixed Liquor Suspended Solids Concentrations but Variations in
Oxygen Requirements          421
Approximate Technique for Spatially Distributing
Oxygen Requirements          422
Design of Conventional Activated Sludge Systems          429
Design of High Purity Oxygen Activated Sludge
Systems          432
Design of Selector Activated Sludge Systems          432
Step Feed and Contact Stabilization Activated Sludge— Systems with Nonuniform Mixed Liquor Suspended Solids
Concentrations          436
Design of Step Feed Activated Sludge Systems          437
Design of Contact Stabilization Activated
Sludge Systems          440
Batch Reactors—Sequencing Batch Reactor Activated Sludge          448
Process Optimization Using Dynamic Models          452
Process Operation          453
Solids Retention Time Control          453
Determination of Solids Wastage Rate          453
Solids Retention Time Control Based on Direct Analysis of Mixed Liquor Suspended Solids
Concentration          455
Solids Retention Time Control Based on Centrifuge Analysis of Mixed Liquor Suspended Solids    Concentration          455
Hydraulic Control of Solids Retention Time          455
Qualitative Observations          456
Bioreactor          457
Clarifier          457
During Sludge Volume Index Measurement          458
Microscopic Examination          459
Activated Sludge Oxidation to Control Settleability          459
Dynamic Process Control          460
Key Points          461
Study Questions          464
References          466

Chapter 12  Biological Nutrient Removal          471
Process Description          471
General Description          471
Process Options and Comparison          471
Typical Applications          479
Factors Affecting Performance          480
Solids Retention Time          480
Ratios of Wastewater Organic Matter to Nutrient          482
Composition of Organic Matter in Wastewater          486
Effluent Total Suspended Solids          486
Environmental and Other Factors          487
Process Design          489
Biological Nitrogen Removal Processes          489
Nitrification          490
Design of an Anoxic Selector          493
Design of an MLE System to Achieve a Desired
Effluent Nitrate-N Concentration          498
Four-Stage Bardenpho Process—Addition of Second  Anoxic and Aerobic Zones          503
Simultaneous Nitrification and Denitrification          506
Separate Stage Denitrification          509
Biological Phosphorus Removal Processes          510
Processes That Remove Both Nitrogen and Phosphorus          514
Process Optimization by Dynamic Simulation          517
Process Operation          518
Key Points          519
Study Questions          522
References          524
Chapter 13  Aerobic Digestion          529
Process Description          529
General Description          529
Process Options and Comparison          534
Conventional Aerobic Digestion          535
Anoxic/Aerobic Digestion          536
Autothermal Thermophilic Aerobic Digestion          538
Typical Applications          541
Factors Affecting Performance          542
Solids Retention Time and Temperature          542
13.2.2   pH          545
Mixing          546
Solids Type          546
Bioreactor Configuration          547
Process Design          549
Overview          549
Design from Empirical Correlations          549
Design from Batch Data          552
Design by Simulation          554
Process Operation          554

Key Points          555
Study Questions          556
References          558
Chapter 14  Anaerobic Processes.          561
Process Description          561
General Description          561
Anaerobic Digestion          562
High-Rate Anaerobic Processes          565
Upflow Anaerobic Sludge Blanket          566
Anaerobic Filter          568
Hybrid Upflow Anaerobic Sludge Blanket/
Anaerobic Filter          568
Expanded Granular Sludge Bed          568
Solids Fermentation Processes          569
Comparison of Process Options          571
Typical Applications          574
Factors Affecting Performance          576
Solids Retention Time          577
Volumetric Organic Loading Rate          577
Total Hydraulic Loading          579
Temperature          580
14.2.5   pH          582
Inhibitory and Toxic Materials          586
Light Metal Cations          586
Ammonia          586
Sulfide         589
Heavy Metals          590
Volatile Acids          590
Other Organic Compounds          591
Nutrients          591
Mixing          592
Waste Type          593
Process Design          594
Anaerobic Digestion          595
High Rate Anaerobic Processes          601
Fermentation Systems          602
Other Design Considerations          604
Process Operation          605
Process Monitoring and Control          605
Common Operating Problems          606
Key Points          607
Study Questions          610
References          612
Chapter 15  Lagoons          617
Process Description          617
General Description          617

Process Options and Comparison        618
Anaerobic Lagoon        618
Facultative and Facultative/Aerated Lagoon.        619
Aerobic Lagoon        621
Comparison of Lagoon Systems        622
Typical Applications        623
Factors Affecting Performance        625
Solids Retention Time/Hydraulic Residence Time        625
Volumetric Organic Loading Rate        627
Areal Organic Loading Rate        627
Mixing        628
Temperature        630
Other Factors        630
Process Design        631
Completely Mixed Aerated Lagoons        631
Completely Mixed Aerated Lagoon with Aerobic
Solids Stabilization        639
Completely Mixed Aerated Lagoon with Benthal
Stabilization and Storage        641
Process Operation        647
Key Points        648
Study Questions        649
References        650

PartIV        theory: Modeling of Ideal attached Growth reactors

Chapter 16  Biofilm Modeling          655
Nature of Biofilms          655
Effects of Transport Limitations          660
Mass Transfer to and within a Biofilm          660
Modeling Transport and Reaction: Effectiveness Factor
Approach          663
Effectiveness Factor          663
Application of Effectiveness Factor          666
Modeling Transport and Reaction: Pseudoanalytical Approach          669
Pseudoanalytical Approach          669
Application of Pseudoanalytical Approach          672
Normalized Loading Curves          676
Parameter Estimation          680
Modeling Transport and Reaction: Limiting-Case Solutions          680
Deep Biofilm         681
Fully Penetrated Biofilm          681
First-Order Biofilm          681
Zero-Order Biofilm          682
Other Cases          682
Error Analysis          682

Effects of Multiple Limiting Nutrients          682
Multispecies Biofilms          685
Multidimensional Mathematical Models of Biofilms          689
Key Points          691
Study Questions          693
References          694
Chapter 17  Biofilm Reactors          697
Packed Towers          697
Description and Simplifying Assumptions for Model        Development          697
Model Development          698
Dependence of Substrate Flux on Bulk Substrate Concentration          702
Performance of a Packed Tower without
Flow Recirculation (α = 0)          707
Performance as a Function of Tower Depth          707
Effect of Biofilm Surface Area on
Tower Performance          707
Effect of Influent Substrate Concentration on Tower Performance          709
Effect of Influent Flow Rate on
Tower Performance          711
Performance of a Packed Tower with Flow Recirculation          712
Factors Not Considered in Model          714
External Mass Transfer          714
Biomass Detachment          715
Other Factors Not Considered          715
Other Packed Tower Models          717
Grady and Lim Model          717
Velz Model          718
Eckenfelder Model          718
Kornegay Model          719
Schroeder Model          720
Logan, Hermanowicz, and Parker Model          720
Hinton and Stensel Model          720
Rotating Disc Reactors          721
Description and Model Development          721
Description          721
External Mass Transfer          722
Model for the Submerged Sector          724
Model for the Aerated Sector          725
Performance of Rotating Disc Reactor Systems          726
Other Rotating Disc Reactor Models          732
Grady and Lim Model          732
Kornegay Model          733
Model of Hansford, Andrews, Grieves, and Carr          733
Model of Famularo, Mueller, and Mulligan          734
Model of Watanabe          734
Model of Gujer and Boller          734
Model of Spengel and Dzombak          734
Key Points        735
Study Questions        736
References        737

Chapter 18  Fluidized Bed Biological Reactors          739
Description of Fluidized Bed Biological Reactor          739
General Characteristics          739
Nature of the Biofilm          741
Fluidization          742
Fluidization of Clean Media          742
Effects of Biomass on Fluidization          745
Terminal Settling Velocity          745
Bed Porosity and Expansion          747
Solids Mixing          749
Relationship between Fluidization and Biomass Quantity          751
Modeling Fluidized Bed Biological Reactors          753
Biofilm Submodel          754
Fluidization Submodel          756
Reactor Flow Submodel          756
Theoretical Performance of Fluidized Bed Biological Reactors          757
Sizing a Fluidized Bed Biological Reactor          759
Key Points          761
Study Questions          762
References          763

Part  V        applications: attached Growth reactors
Chapter 19  Trickling Filter          767
Process Description          767
General Description          767
Process Options          770
Treatment Objectives          770
Media Type          771
Coupled Trickling Filter/Activated Sludge Systems          774
Comparison of Process Options          775
Typical Applications          778
Factors Affecting Performance          779
Process Loading          779
Recirculation         783
Media Depth          784
Temperature          785
Ventilation          786
Media Type          788
Distributor Configuration          789
Wastewater Characteristics          791
Effluent Total Suspended Solids          791

Process Design          792
Sizing Trickling Filters with Black-Box Correlations          793
Sizing Trickling Filters with Loading Factor Relationships          794
Sizing Trickling Filters with the Modified Velz/Germain
Equation          799
The Model of Logan, Hermanowicz and Parker          803
Ventilation System          804
Coupled Trickling Filter/Activated Sludge Processes          804
Process Operation          811
Typical Operation          811
Coupled Processes          812
Nuisance Organisms          813
Key Points          813
Study Questions          815
References          816

Chapter 20  Rotating Biological Contactor          819
Process Description          819
General Description          819
Process Options          821
Treatment Objectives          821
Equipment Type          823
Comparison of Process Options          823
Typical Applications          824
Factors Affecting Performance          825
Organic Loading          825
Hydraulic Loading          828
Staging          829
Temperature          829
Wastewater Characteristics          830
Biofilm Characteristics          831
Process Design          832
Removal of Biodegradable Organic Matter          832
General Approach          832
First-Order Model          833
Second-Order Model          835
Separate Stage Nitrification          838
Combined Carbon Oxidation and Nitrification          840
Pilot Plants          843
General Comments          847
Process Operation          848
Key Points          848
Study Questions          850
References          851

Chapter 21  Submerged Attached Growth Bioreactors          853
Process Description          853
General Description          853
Downflow Packed Bed Bioreactors          855
Upflow Packed Bed Bioreactors          857
Fluidized and Expanded Bed Biological Reactors          859
Moving Bed Biological Reactors          859
Integrated Fixed Film Activated Sludge          860
Other Process Options          862
Comparison of Process Options          863
Typical Applications          864
Factors Affecting Performance          865
Total Volumetric Loading          865
Substrate Flux and Surface Loading          868
Total Hydraulic Loading          869
Solids Retention Time          869
Hydraulic Residence Time          872
Dissolved Oxygen Concentration          872
Other Factors          873
Process Design          873
General Design Procedures          873
Packed Bed Bioreactors          875
Fluidized and Expanded Bed Biological Reactors          879
Moving Bed Biological Reactors          881
Integrated Fixed Film Activated Sludge Systems          881
General Design Experience          885
Process Operation          885
Key Points          886
Study Questions          887
References          888

Part VI        Future Challenges

Chapter 22  Fate and Effects of Xenobiotic Organic Chemicals          895
Biodegradation          895
Requirements for Biodegradation          896
Factors Influencing Biodegradation          897
Classes of Biodegradation and Their Models          897
Growth-Linked Biodegradation          897
Cometabolic Biodegradation          898
Abiotic Removal Mechanisms          899
Volatilization         900
Models for Volatilization          900
Estimation of Coefficients          901
Sorption          902
Mechanisms and Models          902
Estimation of Coefficients          903
Relative Importance of Biotic and Abiotic Removal          904
Effects of Xenobiotic Organic Chemicals          907
Mechanisms and Models for Inhibition and Toxicity          908
Effects of Xenobiotic Organic Chemicals on Carbon Oxidation
and Nitrification          909
References        913


Chapter 23  Designing Systems for Sustainability          917
Defining Sustainability          917
The Context for Improved Sustainability          917
Demographic Trends          917
Resource Consumption          918
Sustainable Development          918
The Triple Bottom Line: Social, Economic, Environmental          918
Technical Objectives for More Sustainable Systems          920
Greater Water Resource Availability          920
Lowering Energy and Chemical Consumption          921
Recovering Resources          921
Technologies to Achieve Greater Water Resource Availability          921
Membrane Bioreactors          921
Technology Description          921
Contribution to Sustainability          922
Biological Nutrient Removal          923
Technology Description          923
Contribution to Sustainability          923
Advanced Treatment Coupled with Biodegradation          923
Technology Description          924
Contribution to Sustainability          924
Technologies to Achieve Lower Energy and Chemical                   Consumption          924
Anaerobic Treatment          924
Technology Description          925
Contribution to Sustainability          926
Biological Nutrient Removal          927
Technology Description          927
Contribution to Sustainability          927
Nitritation and Denitritation          927
Technology Description          927
Contribution to Sustainability          930
Biological Air Treatment          930
Technology Description          930
Contribution to Sustainability          931
Technologies to Achieve Resource Recovery          931
Biological Nutrient Removal and Recovery          932
Technology Description          932
Contribution to Sustainability          933
Land Application of Biosolids          933
Technology Description          934
Contribution to Sustainability          934
Closing Comments          934
Key Points          935
Study Questions          936
References          937

Appendix A: Acronyms          939
Appendix B: Symbols          943
Appendix C: Unit Conversions          961
Index          963
回复此楼

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com
  • 附件 1 : Biological_Wastewater_Treatme.pdf
  • 2014-04-22 14:45:52, 11.48 M

» 本帖已获得的红花(最新10朵)

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

kaiqop2014

新虫 (小有名气)


★★★ 三星级,支持鼓励

真真的一本好书啊
139楼2015-03-05 14:50:07
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 315 个回答

张亚男0811

金虫 (小有名气)


★★★★★ 五星级,优秀推荐

没事的时候看一下,丰富知识
4楼2014-04-22 22:11:35
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

烈冰若兰

木虫 (小有名气)


引用回帖:
4楼: Originally posted by 张亚男0811 at 2014-04-22 22:11:35
没事的时候看一下,丰富知识

讲的真的很详细,就是有点厚
5楼2014-04-22 22:48:30
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

alin501

木虫 (小有名气)


★★★★★ 五星级,优秀推荐

英文版教材是对中文版的有益补充!
13楼2014-04-24 20:16:01
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
2014-04-22 21:29   回复  
三星好评  顶一下,感谢分享!
9937587456楼
2014-04-22 23:01   回复  
五星好评  赞 [ 发自小木虫客户端 ]
2014-04-23 04:55   回复  
五星好评  顶一下,感谢分享!
hanziNUST8楼
2014-04-23 07:32   回复  
五星好评  顶一下,感谢分享!
ajlin9楼
2014-04-23 12:18   回复  
五星好评  顶一下,感谢分享!
zhaolang10楼
2014-04-23 12:40   回复  
五星好评  顶一下,感谢分享!
贵研11楼
2014-04-23 12:46   回复  
五星好评  谢谢分享 [ 发自小木虫客户端 ]
pillow8612楼
2014-04-24 15:13   回复  
五星好评  顶一下,感谢分享!
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见