| 查看: 437 | 回复: 3 | |||
| 本帖产生 1 个 LS-EPI ,点击这里进行查看 | |||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||
[求助]
帮忙查询一篇期刊论文的SCI检索号
|
|||
|
Gang Yin, Yingtang Zhang, et al. Online fault diagnosis method based on incremental support vector data description and extreme learning machine with incremental output structure, neurocomputing, 128(2014)224-231. [ 发自手机版 http://muchong.com/3g ] |
» 猜你喜欢
投稿Elsevier的杂志(返修),总是在选择OA和subscription界面被踢皮球
已经有6人回复
中科院杭州医学所招收博士生一名(生物分析化学、药物递送)
已经有4人回复
求个博导看看
已经有18人回复
自荐读博
已经有6人回复
青基代表作,AAAI之类的A会的special track在国内认可度高吗?还是归为workshop之流?
已经有3人回复
上海工程技术大学【激光智能制造】课题组招收硕士
已经有6人回复
上海工程技术大学张培磊教授团队招收博士生
已经有4人回复
临港实验室与上科大联培博士招生1名
已经有9人回复
写了一篇“相变储能技术在冷库中应用”的论文,论文内容以实验为主,投什么期刊合适?
已经有6人回复
baiyuefei
版主 (文学泰斗)
风雪
- LS-EPI: 1647
- 应助: 4642 (副教授)
- 贵宾: 46.969
- 金币: 658053
- 散金: 11616
- 红花: 995
- 沙发: 81
- 帖子: 69383
- 在线: 13279.3小时
- 虫号: 676696
- 注册: 2008-12-18
- 性别: GG
- 专业: 合成药物化学
- 管辖: 有机交流
【答案】应助回帖
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★
wozhucel: 金币+20, ★★★★★最佳答案 2014-04-03 08:57:58
oven1986: 检索EPI+1, 感谢应助,鼓励一下。 2014-04-03 09:53:14
wozhucel: 金币+20, ★★★★★最佳答案 2014-04-03 08:57:58
oven1986: 检索EPI+1, 感谢应助,鼓励一下。 2014-04-03 09:53:14
|
Online fault diagnosis method based on Incremental Support Vector Data Description and Extreme Learning Machine with incremental output structure 作者:Yin, G (Yin, Gang)[ 1 ] ; Zhang, YT (Zhang, Ying-Tang)[ 1 ] ; Li, ZN (Li, Zhi-Ning)[ 1 ] ; Ren, GQ (Ren, Guo-Quan)[ 1 ] ; Fan, HB (Fan, Hong-Bo)[ 1 ] NEUROCOMPUTING 卷: 128 页: 224-231 DOI: 10.1016/j.neucom.2013.01.061 出版年: MAR 27 2014 查看期刊信息 会议名称 会议: International Workshop of Extreme Learning Machines (ELM) 会议地点: Singapore, SINGAPORE 会议日期: DEC 11-13, 2012 摘要 Online fault diagnosis system should be able to detect faults, recognize fault types and update the discriminating ability and knowledge of itself automatically in real time. But the class number in fault diagnosis is not constant and it is in a dynamic state with new members enrolled. The traditional recognition algorithms are not able to update diagnosis system efficiently when the class number of failure modes is increasing. To solve the problem, an online fault diagnosis method based on Incremental Support Vector Data Description (ISVDD) and Extreme Learning Machine with incremental output structure (IOELM) is proposed. ISVDD is used to find a new failure mode quickly in the continuous condition monitoring of the equipments. The fixed structure of Extreme Learning Machine is changed into an elastic structure whose output nodes could be added incrementally to recognize the new fault mode efficiently. Recognition experiments on the diesel engine under eleven different conditions show that the online fault diagnosis method based on ISVDD and IOELM works well, and the method is also feasible in fault diagnosis of other mechanical equipments. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved. 关键词 作者关键词:Incremental Support Vector Data; Description; Extreme Learning Machine; Multi-scale principal component analysis; Online fault diagnosis KeyWords Plus:QUANTITATIVE MODEL 作者信息 通讯作者地址: Yin, G (通讯作者) Mech Engn Coll, Dept 7, Shijiazhuang, Peoples R China. 地址: [ 1 ] Mech Engn Coll, Dept 7, Shijiazhuang, Peoples R China 电子邮件地址:gang.gang88@163.com 出版商 ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 类别 / 分类 研究方向:Computer Science Web of Science 类别:Computer Science, Artificial Intelligence 文献信息 文献类型:Article; Proceedings Paper 语种:English 入藏号: WOS:000331851700027 ISSN: 0925-2312 电子 ISSN: 1872-8286 |
3楼2014-04-02 18:59:20
baiyuefei
版主 (文学泰斗)
风雪
- LS-EPI: 1647
- 应助: 4642 (副教授)
- 贵宾: 46.969
- 金币: 658053
- 散金: 11616
- 红花: 995
- 沙发: 81
- 帖子: 69383
- 在线: 13279.3小时
- 虫号: 676696
- 注册: 2008-12-18
- 性别: GG
- 专业: 合成药物化学
- 管辖: 有机交流
2楼2014-04-02 18:59:03
baiyuefei
版主 (文学泰斗)
风雪
- LS-EPI: 1647
- 应助: 4642 (副教授)
- 贵宾: 46.969
- 金币: 658053
- 散金: 11616
- 红花: 995
- 沙发: 81
- 帖子: 69383
- 在线: 13279.3小时
- 虫号: 676696
- 注册: 2008-12-18
- 性别: GG
- 专业: 合成药物化学
- 管辖: 有机交流
4楼2014-04-02 18:59:38







回复此楼