| 查看: 438 | 回复: 3 | |||
| 本帖产生 1 个 LS-EPI ,点击这里进行查看 | |||
[求助]
帮忙查询一篇期刊论文的SCI检索号
|
|||
|
Gang Yin, Yingtang Zhang, et al. Online fault diagnosis method based on incremental support vector data description and extreme learning machine with incremental output structure, neurocomputing, 128(2014)224-231. [ 发自手机版 http://muchong.com/3g ] |
» 猜你喜欢
不自信的我
已经有5人回复
磺酰氟产物,毕不了业了!
已经有4人回复
论文终于录用啦!满足毕业条件了
已经有16人回复
求个博导看看
已经有19人回复
投稿Elsevier的杂志(返修),总是在选择OA和subscription界面被踢皮球
已经有8人回复
baiyuefei
版主 (文学泰斗)
风雪
- LS-EPI: 1647
- 应助: 4642 (副教授)
- 贵宾: 46.969
- 金币: 658090
- 散金: 11616
- 红花: 995
- 沙发: 81
- 帖子: 69384
- 在线: 13281.4小时
- 虫号: 676696
- 注册: 2008-12-18
- 性别: GG
- 专业: 合成药物化学
- 管辖: 有机交流
2楼2014-04-02 18:59:03
baiyuefei
版主 (文学泰斗)
风雪
- LS-EPI: 1647
- 应助: 4642 (副教授)
- 贵宾: 46.969
- 金币: 658090
- 散金: 11616
- 红花: 995
- 沙发: 81
- 帖子: 69384
- 在线: 13281.4小时
- 虫号: 676696
- 注册: 2008-12-18
- 性别: GG
- 专业: 合成药物化学
- 管辖: 有机交流
【答案】应助回帖
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★
wozhucel: 金币+20, ★★★★★最佳答案 2014-04-03 08:57:58
oven1986: 检索EPI+1, 感谢应助,鼓励一下。 2014-04-03 09:53:14
wozhucel: 金币+20, ★★★★★最佳答案 2014-04-03 08:57:58
oven1986: 检索EPI+1, 感谢应助,鼓励一下。 2014-04-03 09:53:14
|
Online fault diagnosis method based on Incremental Support Vector Data Description and Extreme Learning Machine with incremental output structure 作者:Yin, G (Yin, Gang)[ 1 ] ; Zhang, YT (Zhang, Ying-Tang)[ 1 ] ; Li, ZN (Li, Zhi-Ning)[ 1 ] ; Ren, GQ (Ren, Guo-Quan)[ 1 ] ; Fan, HB (Fan, Hong-Bo)[ 1 ] NEUROCOMPUTING 卷: 128 页: 224-231 DOI: 10.1016/j.neucom.2013.01.061 出版年: MAR 27 2014 查看期刊信息 会议名称 会议: International Workshop of Extreme Learning Machines (ELM) 会议地点: Singapore, SINGAPORE 会议日期: DEC 11-13, 2012 摘要 Online fault diagnosis system should be able to detect faults, recognize fault types and update the discriminating ability and knowledge of itself automatically in real time. But the class number in fault diagnosis is not constant and it is in a dynamic state with new members enrolled. The traditional recognition algorithms are not able to update diagnosis system efficiently when the class number of failure modes is increasing. To solve the problem, an online fault diagnosis method based on Incremental Support Vector Data Description (ISVDD) and Extreme Learning Machine with incremental output structure (IOELM) is proposed. ISVDD is used to find a new failure mode quickly in the continuous condition monitoring of the equipments. The fixed structure of Extreme Learning Machine is changed into an elastic structure whose output nodes could be added incrementally to recognize the new fault mode efficiently. Recognition experiments on the diesel engine under eleven different conditions show that the online fault diagnosis method based on ISVDD and IOELM works well, and the method is also feasible in fault diagnosis of other mechanical equipments. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved. 关键词 作者关键词:Incremental Support Vector Data; Description; Extreme Learning Machine; Multi-scale principal component analysis; Online fault diagnosis KeyWords Plus:QUANTITATIVE MODEL 作者信息 通讯作者地址: Yin, G (通讯作者) Mech Engn Coll, Dept 7, Shijiazhuang, Peoples R China. 地址: [ 1 ] Mech Engn Coll, Dept 7, Shijiazhuang, Peoples R China 电子邮件地址:gang.gang88@163.com 出版商 ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 类别 / 分类 研究方向:Computer Science Web of Science 类别:Computer Science, Artificial Intelligence 文献信息 文献类型:Article; Proceedings Paper 语种:English 入藏号: WOS:000331851700027 ISSN: 0925-2312 电子 ISSN: 1872-8286 |
3楼2014-04-02 18:59:20
baiyuefei
版主 (文学泰斗)
风雪
- LS-EPI: 1647
- 应助: 4642 (副教授)
- 贵宾: 46.969
- 金币: 658090
- 散金: 11616
- 红花: 995
- 沙发: 81
- 帖子: 69384
- 在线: 13281.4小时
- 虫号: 676696
- 注册: 2008-12-18
- 性别: GG
- 专业: 合成药物化学
- 管辖: 有机交流
4楼2014-04-02 18:59:38







回复此楼