| 查看: 1882 | 回复: 40 | ||||||||||
| 【奖励】 本帖被评价26次,作者nmwhx001增加金币 20.8 个 | ||||||||||
[资源]
Wavelet and Subband Coding 英文版本,外加小波入门学习英文版
|
||||||||||
|
Wavelets and Subband Coding Martin Vetterli University of California at Berkeley Jelena Kovaˇcevi´c AT&T Bell Laboratories Contents Preface xiii 1 Wavelets, Filter Banks and Multiresolution Signal Processing 1 1.1 Series Expansions of Signals . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Multiresolution Concept . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Overview of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Fundamentals of Signal Decompositions 15 2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Vector Spaces and Inner Products . . . . . . . . . . . . . . . 18 2.2.2 Complete Inner Product Spaces . . . . . . . . . . . . . . . . . 21 2.2.3 Orthonormal Bases . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.4 General Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.5 Overcomplete Expansions . . . . . . . . . . . . . . . . . . . . 28 2.3 Elements of Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.1 Basic Definitions and Properties . . . . . . . . . . . . . . . . 30 2.3.2 Linear Systems of Equations and Least Squares . . . . . . . . 32 2.3.3 Eigenvectors and Eigenvalues . . . . . . . . . . . . . . . . . . 33 2.3.4 Unitary Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.5 Special Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3.6 Polynomial Matrices . . . . . . . . . . . . . . . . . . . . . . . 36 2.4 Fourier Theory and Sampling . . . . . . . . . . . . . . . . . . . . . . 37 vii ...... 1 Wavelets, Filter Banks and Multiresolution Signal Processing “It is with logic that one proves; it is with intuition that one invents.” — Henri Poincar´e The topic of this book is very old and very new. Fourier series, or expansion of periodic functions in terms of harmonic sines and cosines, date back to the early part of the 19th century when Fourier proposed harmonic trigonometric series [100]. The first wavelet (the only example for a long time!) was found by Haar early in this century [126]. But the construction of more general wavelets to form bases for square-integrable functions was investigated in the 1980’s, along with efficient algorithms to compute the expansion. At the same time, applications of these techniques in signal processing have blossomed. While linear expansions of functions are a classic subject, the recent construc- tions contain interesting new features. For example, wavelets allow good resolution in time and frequency, and should thus allow one to see “the forest and the trees.” This feature is important for nonstationary signal analysis. While Fourier basis functions are given in closed form, many wavelets can only be obtained through a computational procedure (and even then, only at specific rational points). While this might seem to be a drawback, it turns out that if one is interested in imple- menting a signal expansion on real data, then a computational procedure is better than a closed-form expression! ..................[ Last edited by nmwhx001 on 2013-2-5 at 00:23 ] |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : WaveletsandSubbandCoding.pdf
- 附件 2 : WaveletTutorial(小波入门教程)1.pdf
- 附件 3 : WaveletTutorial(小波入门教程)2.pdf
2013-02-05 00:20:34, 5.03 M
2013-02-05 00:23:07, 276.42 K
2013-02-05 00:23:17, 351.41 K
» 收录本帖的淘帖专辑推荐
书籍下载网站 | 国外专业电子书1 | 专业书籍(外文版)WM | 科技 |
待下载 | ML相关 | 学习资料 | 淘书 |
» 本帖已获得的红花(最新10朵)
» 本帖@通知
» 猜你喜欢
垃圾破二本职称评审标准
已经有19人回复
职称评审没过,求安慰
已经有53人回复
毕业后当辅导员了,天天各种学生超烦
已经有5人回复
26申博自荐
已经有3人回复
A期刊撤稿
已经有4人回复
8楼2013-02-05 18:11:21
11楼2013-02-06 21:59:42
13楼2013-02-06 22:03:01
37楼2014-07-17 17:25:27
简单回复
cuker_12楼
2013-02-05 06:58
回复
五星好评 顶一下,感谢分享!
cuker_13楼
2013-02-05 06:59
回复
顶一下,感谢分享!
qqniu4楼
2013-02-05 08:47
回复
五星好评 顶一下,感谢分享!
2013-02-05 14:36
回复
五星好评 顶一下,感谢分享!
2013-02-05 14:36
回复
顶一下,感谢分享!
2013-02-05 14:37
回复
顶一下,感谢分享!
2013-02-06 18:33
回复
五星好评 顶一下,感谢分享!
g_txzhu10楼
2013-02-06 21:59
回复
五星好评 顶一下,感谢分享!
g_txzhu12楼
2013-02-06 22:02
回复
顶一下,感谢分享!
shouluotuo14楼
2013-02-07 05:06
回复
五星好评 顶一下,感谢分享!
a459127715楼
2013-02-07 06:16
回复
五星好评 顶一下,感谢分享!
robustman16楼
2013-02-07 09:02
回复
五星好评 顶一下,感谢分享!
robustman17楼
2013-02-07 09:02
回复
顶一下,感谢分享!
robustman18楼
2013-02-07 09:03
回复
顶一下,感谢分享!
whumike19楼
2013-02-07 09:17
回复
五星好评 顶一下,感谢分享!
uclanelson20楼
2013-02-07 10:50
回复
五星好评 顶一下,感谢分享!
dreamfly_cg21楼
2013-02-07 16:15
回复
五星好评 顶一下,感谢分享!
zhchzhsh207622楼
2013-02-08 00:56
回复
五星好评 感谢分享。
xuexxp23楼
2013-02-08 15:46
回复
五星好评 顶一下,感谢分享!
xuexxp24楼
2013-02-08 15:46
回复
顶一下,感谢分享!
xuexxp25楼
2013-02-08 15:46
回复
顶一下,感谢分享!
kejia26楼
2013-02-08 22:23
回复
五星好评 顶一下,感谢分享!
kejia27楼
2013-02-08 22:24
回复
顶一下,感谢分享!
opaler28楼
2013-02-08 22:54
回复
五星好评 顶一下,感谢分享!
everie29楼
2013-02-10 03:20
回复
五星好评 

everie30楼
2013-02-10 03:20
回复
送鲜花一朵
leo030931楼
2013-02-10 22:23
回复
五星好评 顶一下,感谢分享!
leo030932楼
2013-02-10 22:23
回复
顶一下,感谢分享!
哈哈大姑爷33楼
2013-02-11 13:23
回复
五星好评
wanghl531134楼
2013-04-06 16:09
回复
顶一下,感谢分享!
2013-05-25 11:34
回复
五星好评 顶一下,感谢分享!
太子琰36楼
2014-04-20 21:46
回复
五星好评
cba32138楼
2015-01-17 21:29
回复
五星好评 顶一下,感谢分享!
wxt31139楼
2015-03-18 13:25
回复
五星好评 顶一下,感谢分享!
yhy639240楼
2015-04-09 09:45
回复
五星好评 顶一下,感谢分享!
a41788641楼
2015-05-28 16:07
回复
五星好评 顶一下,感谢分享!













回复此楼