24小时热门版块排行榜    

查看: 3580  |  回复: 14
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

匿名

用户注销 (正式写手)


本帖仅楼主可见

» 收录本帖的淘帖专辑推荐

科技界

» 猜你喜欢

已阅   同方向广播   申请数学EPI   回复此楼   编辑   查看我的主页

math2000

铁杆木虫 (职业作家)

【答案】应助回帖

现代数学的一个特点就是以集合为研究对象,这样的好处就是可以将很多不同问题的本质抽象出来,变成同一个问题,当然这样的坏处就是描述起来比较抽象,很多人就难以理解了。
既然是研究集合,每个人感兴趣的角度不同,研究的方向也就不同。为了能有效地研究集合,必须给集合赋予一些“结构”(从一些具体问题抽象出来的结构)。
从数学的本质来看,最基本的集合有两类:线性空间(有线性结构的集合)、度量空间(有度量结构的集合)。
对线性空间而言,主要研究集合的描述,直观地说就是如何清楚地告诉地别人这个集合是什么样子。为了描述清楚,就引入了基(相当于三维空间中的坐标系)的概念,所以对于一个线性空间来说,只要知道其基即可,集合中的元素只要知道其在给定基下的坐标即可。
但线性空间中的元素没有“长度”(相当于三维空间中线段的长度),为了量化线性空间中的元素,所以又在线性空间引入特殊的“长度”,即范数。赋予了范数的线性空间即称为赋犯线性空间。
但赋范线性空间中两个元素之间没有角度的概念,为了解决该问题,所以在线性空间中又引入了内积的概念。
因为有度量,所以可以在度量空间、赋范线性空间以及内积空间中引入极限,但抽象空间中的极限与实数上的极限有一个很大的不同就是,极限点可能不在原来给定的集合中,所以又引入了完备的概念,完备的内积空间就称为Hilbert空间。
这几个空间之间的关系是:
线性空间与度量空间是两个不同的概念,没有交集。
赋范线性空间就是赋予了范数的线性空间,也是度量空间(具有线性结构的度量空间)
内积空间是赋范线性空间
希尔伯特空间就是完备的内积空间。
9楼2012-10-16 22:11:41
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 15 个回答

fdliuqing

禁虫 (正式写手)

感谢参与,应助指数 +1
本帖内容被屏蔽

2楼2012-09-23 19:36:27
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

人民海军

木虫 (职业作家)

【答案】应助回帖


感谢参与,应助指数 +1
小雨萌萌: 金币+1, 3Q 2012-09-25 18:17:35
几个空间一句话说不清楚,见泛函分析课本,范数就是长度,绝对值,模,向量长度都是范数

[ 发自手机版 http://muchong.com/3g ]
Letbygonesbebygones.
3楼2012-09-24 15:17:27
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

hanbing10106

银虫 (初入文坛)

【答案】应助回帖

最好上百度百科上查查,每一个都有详细解释
5楼2012-10-09 22:13:50
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
信息提示
请填处理意见