24小时热门版块排行榜    

查看: 1257  |  回复: 8
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

匿名

用户注销 (著名写手)

本帖仅楼主可见
已阅   同方向广播   申请数学EPI   回复此楼   编辑   查看我的主页

sophia87

金虫 (小有名气)

抛开上述的质疑,这个问题其实很容易就能通过函数极限的定义证明:
由f(x)的极限为g(x)可以得知:
存在μ1>0,当|x-x1|<μ1时,对于任意δ/2>0,都有
|f(x)-g(x)|<δ/2
即  -δ/2+g(x)<f(x)<δ/2+g(x)   ①
同理,存在μ2>0,当|x-x1|<μ2时,(同一过程),对于任意δ/2>0,都有
|g(x)-1|<δ/2
即  -δ/2+1<g(x)<δ/2+1  ②
取μ=min(μ1,μ2)
当|x-x1|<μ时,有
-δ+1<f(x)<δ+1  (①+②)
即 |f(x)-1|<δ

证明完毕
清心寡欲,格物致知。
9楼2012-05-28 14:30:42
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 yxh821011 的主题更新
信息提示
请填处理意见