24小时热门版块排行榜    

CyRhmU.jpeg
查看: 3131  |  回复: 4

09yschen

金虫 (正式写手)

[求助] 50金求解:关于lack-of-fit test的意义及应用

我得到的标准曲线是用origin进行线性拟合的,但审稿人说加个lack-of-fit test,因为我的r值不太好。有位大神对我的数据用matlab进行了test,,请见http://muchong.com/bbs/viewthread.php?tid=4020335。但问题是,我看不懂……
我想请问:标准曲线是用origin进行线性拟合的还是用lack-of-fit test得到的呢,帖子里的P值能说明什么,应该如何应用,我看到直接给了个P值,但也有人用F值,真的不明白,想请教下,对下那位大神的数据,我应该如何应用。
求解……急
我特意取了一些文献的表达,请见图,我应该用哪个好。
PS:我是做分析方法的。






回复此楼

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

dbb627

荣誉版主 (著名写手)

【答案】应助回帖

感谢参与,应助指数 +1
09yschen(金币+10): 2012-01-08 20:51:17
见帖
http://en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares
http://muchong.com/bbs/viewthread.php?tid=4020335&pid=7&page=1#pid7
LOFRTEST Lack-of-fit test for regression model with independent replicate values.
   LOFRTEST(D,alpha) is a statistical test that gives information on the form
   of the model under consideration. A significant lack-of-fit suggest that there
   may be some systematic variation unaccounted for in the hypothesized model
   (chosen model does not well describe the data). It arises when there are exact
   replicate values of the independent variable in the model that provide an estimate
   of pure error. Pure error is in essence the amount of error that cannot be accounted
   for by any model. Then allows a test on whether there is error present aside
   from pure error. For the construction of the lack-of-fit test we need to examine
   three common types of linear models:
       - single mean (one parameter)
       - slope and intercept or common regression model (two parameters)
       - separate means for each x-value or one-way ANOVA (many parameters).
   So, the pure error is the error of the separate means on ANOVA and the total error
   in the residual resulting in the regression analysis: the lack-of-fit results
   to be the difference between this two sources of error,

                  SS(LOF) = SSR(Model) - SSE(ANOVA).

   Syntax: lofrtest(D,alpha)
      
   Inputs:
        D - matrix data (=[X Y]) (last column must be the Y-dependent variable).
            (X-independent variable entry can be for a simple [X], multiple [X1,X2,X3,...Xp]
            or polynomial [X,X^2,X^3,...,X^p] regression model).
    alpha - significance level (default = 0.05).

   Outputs:
        A complete summary (table) of analysis of variance partitioning sources of
        variation for testing lack-of-fit.

   Example from the data on height and weight of 19 students in Psy 202. Assigment 3 of Psych
   3030 from the Department of Psychology of the York University. Available on Internet at
   the URL address http://www.psych.yorku.ca/lab/psy3030/assign/assign3.htm
   We are interested to test with a significance-value = 0.05 if there is a lack-of-fit on the
   regression model due to the height replicate values.

               -------------------   -------------------
                 Height   Weight       Height   Weight
               -------------------   -------------------
                   60       90           68      140
                   60      100           68      135
                   62      110           70      160
                   62      116           70      145
                   62      120           70      148
                   66      140           71      143
                   66      170           71      135
                   68      130           74      195
                   68      117           74      164
                   68      155
               -------------------   -------------------

   Data matrix must be:
   D=[60 90;60 100;62 110;62 116;62 120;66 140;66 170;68 130;68 117;68 155;68 140;68 135;
      70 160;70 145;70 148;71 143;71 135;74 195;74 164];

   Calling on Matlab the function:
              lofrtest(D)

   Answer is:

   Lack-of-fit test for regression model with independent replicate values.
   --------------------------------------------------------------------------
   SOV                      SS         df           MS         F        P
   --------------------------------------------------------------------------
   Model               7658.359         1      7658.359     31.720   0.0000
   Residual            4104.378        17       241.434
   --------------------------------------------------------------------------
   Lack-of-fit         2142.011         5       428.402      2.620   0.0797
   Pure error          1962.367        12       163.531
   --------------------------------------------------------------------------
   Total              11762.737        18
   --------------------------------------------------------------------------
   If the associated P-value for any F test is equal or larger than 0.05
   The corresponding null hypothesis is met. Otherwise it is not met.

   Created by A. Trujillo-Ortiz, R. Hernandez-Walls, A. Castro-Perez and
              F.J. Marquez-Rocha
              Facultad de Ciencias Marinas
              Universidad Autonoma de Baja California
              Apdo. Postal 453
              Ensenada, Baja California
              Mexico.
              atrujo@uabc.mx
   Copyright (C) March 4, 2005.

   To cite this file, this would be an appropriate format:
   Trujillo-Ortiz, A., R. Hernandez-Walls, A. Castro-Perez and F.J Marquez-Rocha.
     (2005). lofrtest:Lack-of-fit test for regression model with independent replicate
     values. A MATLAB file. [WWW document]. URL http://www.mathworks.com/matlabcentral/
     fileexchange/loadFile.do?objectId=7074

   References:
  
   Department of Psychology of the York University. Available on Internet at the
           URL address http://www.psych.yorku.ca/lab/psy3030/assign/assign3.htm
   Zar, J. H. (1999), Biostatistical Analysis (2nd ed.).
           NJ: Prentice-Hall, Englewood Cliffs. p. 345-350.
The more you learn, the more you know, the more you know, and the more you forget. The more you forget, the less you know. So why bother to learn.
2楼2012-01-06 22:37:53
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

dbb627

荣誉版主 (著名写手)

【答案】应助回帖

lack of fit,失拟检验,评估模型的拟合度。如果 p 值小于您选择的 a 水平,则证明模型未能与数据准确拟合。您可能需要添加项,或者变换数据,以便更准确地为数据建模。
The more you learn, the more you know, the more you know, and the more you forget. The more you forget, the less you know. So why bother to learn.
3楼2012-01-06 23:15:49
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

09yschen

金虫 (正式写手)

引用回帖:
3楼: Originally posted by dbb627 at 2012-01-06 23:15:49:
lack of fit,失拟检验,评估模型的拟合度。如果 p 值小于您选择的 a 水平,则证明模型未能与数据准确拟合。您可能需要添加项,或者变换数据,以便更准确地为数据建模。

能不能帮我写一个程序,谢谢
4楼2012-01-07 23:58:17
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

zhaopanpan

新虫 (小有名气)

楼主 你好 我现在也遇到了这样的问题  审稿人意见:Linearity should be tested either by ANOVA or a lack of fit test.请问您现在会了吗  能不能教一下
5楼2014-11-22 10:32:10
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 09yschen 的主题更新
信息提示
请填处理意见