24小时热门版块排行榜    

查看: 475  |  回复: 2
本帖产生 1 个 翻译EPI ,点击这里进行查看
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

[交流] 请帮忙修改润色一下

In order to characterize probable electrode reaction pathways of adsorption H on Pt(100) surface, we applied energetically the most stable configuration which was obtained from the H adsorption to map out the minimum-energy paths(MEP) using elastic band method. Here, a (4×1) surface unit cell with a slab of three layers thickness(36 Pt atoms) was chosen to model adsorption of H on Pt(100) surface(the single structure determined lattice constant of 8.324Å was used for the production of Pt(100) surface). The slab was repeated periodically with a 13.962Å of vacuum region between the slabs. Plausible intermediates for the H-Pt(100) interactions was initially optimized by placing H atoms at two different active sites on the Pt(100) surface, including “Pt-bridge site and Pt-hollow site”, corresponding to the structure of Pt(100) surface.
Obviously, the anode would lose electrons during electrode reaction. The adsorption energy and Pt-H distance for hydrogen on Pt(100) surface after optimization are presented in Table 1. The negative adsorption energy comes from the computational procedure that the geometry optimization is carried out only in no-spin-polarization calculation. Seeing from the Table 1, the adsorption energy for bridge site is larger than the hollow site’s. Namely, bridge site on the terrace is stable after geometry optimization, the hollow site on the terrace maybe the intermediate state.
Furthermore, we analyzed Pt-H distance for hydrogen on Pt(100) surface(seen from table 1), Before electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.035 Å, 1.613 Å, respectively. The H-Pt distance at bridge site is shorter than that of hollow site. That is, the bridge site is more stable than another one. After electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.029 Å, 1.607 Å, respectively. Zhang******* used the Morse Potential to calculate Pt-H distance at the most stable state is 1.79 Å, which result is similar to ours. It is found that the distance of Pt-H becomes shorter during the electrode reaction. By comparing the bridge sites with the hollow sites, for Pt-H distance, it shows that the latter is shorter than the former and it is indicated that the adsorption energy for the latter will be larger. In conclusion, adsorption of H on Pt(100) can take place and the best adsorption site is the bridge site.

» 猜你喜欢

» 抢金币啦!回帖就可以得到:

查看全部散金贴

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
1100000000000000000000000000000000000000000000000000金币
3楼2010-12-18 11:06:51
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 3 个回答
zhangzhiweia(金币+6, 翻译EPI+1): 2010-12-21 13:12:21
To explore probable electrode reaction pathways of adsorption H on Pt(100) surface, we applied energetically the most stable configuration obtained from the H adsorption to map out the minimum-energy paths(MEP) by using elastic band method. Here, a (4×1) surface unit cell with a slab of three layers thickness(36 Pt atoms) was chosen to simulate the adsorption of H on Pt(100) surface(the single structure determined lattice constant of 8.324Å and was used for the production of Pt(100) surface). The slab was repeated periodically with a 13.962Å of vacuum region between the slabs. Plausible intermediates for the H-Pt(100) interactions was initially optimized by placing H atoms at two different active sites on the Pt(100) surface, including “Pt-bridge site and Pt-hollow site”, corresponding to the structure of Pt(100) surface.
Obviously, the anode would lose electrons during electrode reaction. The adsorption energy and Pt-H distance for hydrogen on Pt(100) surface after optimization are presented in Table 1. The negative adsorption energy comes from the computational procedure in which the geometry optimization is carried out only in no-spin-polarization calculation. As can be seen from the Table 1, the adsorption energy for bridge site is larger than the hollow site’s. Namely, bridge site on the terrace is stable after geometry optimization, the hollow site on the terrace maybe the intermediate state.
Furthermore, we analyzed Pt-H distance for hydrogen on Pt(100) surface(seen from table 1), Before electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.035 Å, 1.613 Å, respectively. The H-Pt distance at bridge site is shorter than that of hollow site. That is to say, the bridge site is more stable than another one. After electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.029 Å, 1.607 Å, respectively. Zhang******* used the Morse Potential to calculate Pt-H distance at the most stable state is 1.79 Å, which result is similar to ours. It is found that the distance of Pt-H becomes shorter during the electrode reaction. Compared the bridge sites with the hollow sites, for Pt-H distance, it shows that the latter is shorter than the former and it is indicated that the adsorption energy for the latter will be larger. In conclusion, adsorption of H on Pt(100) can take place and the best adsorption site is the bridge site.
2楼2010-12-15 23:28:02
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见