| 查看: 474 | 回复: 2 | |||
| 本帖产生 1 个 翻译EPI ,点击这里进行查看 | |||
[交流]
请帮忙修改润色一下
|
|||
|
In order to characterize probable electrode reaction pathways of adsorption H on Pt(100) surface, we applied energetically the most stable configuration which was obtained from the H adsorption to map out the minimum-energy paths(MEP) using elastic band method. Here, a (4×1) surface unit cell with a slab of three layers thickness(36 Pt atoms) was chosen to model adsorption of H on Pt(100) surface(the single structure determined lattice constant of 8.324Å was used for the production of Pt(100) surface). The slab was repeated periodically with a 13.962Å of vacuum region between the slabs. Plausible intermediates for the H-Pt(100) interactions was initially optimized by placing H atoms at two different active sites on the Pt(100) surface, including “Pt-bridge site and Pt-hollow site”, corresponding to the structure of Pt(100) surface. Obviously, the anode would lose electrons during electrode reaction. The adsorption energy and Pt-H distance for hydrogen on Pt(100) surface after optimization are presented in Table 1. The negative adsorption energy comes from the computational procedure that the geometry optimization is carried out only in no-spin-polarization calculation. Seeing from the Table 1, the adsorption energy for bridge site is larger than the hollow site’s. Namely, bridge site on the terrace is stable after geometry optimization, the hollow site on the terrace maybe the intermediate state. Furthermore, we analyzed Pt-H distance for hydrogen on Pt(100) surface(seen from table 1), Before electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.035 Å, 1.613 Å, respectively. The H-Pt distance at bridge site is shorter than that of hollow site. That is, the bridge site is more stable than another one. After electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.029 Å, 1.607 Å, respectively. Zhang******* used the Morse Potential to calculate Pt-H distance at the most stable state is 1.79 Å, which result is similar to ours. It is found that the distance of Pt-H becomes shorter during the electrode reaction. By comparing the bridge sites with the hollow sites, for Pt-H distance, it shows that the latter is shorter than the former and it is indicated that the adsorption energy for the latter will be larger. In conclusion, adsorption of H on Pt(100) can take place and the best adsorption site is the bridge site. |
» 猜你喜欢
全日制(定向)博士
已经有5人回复
假如你的研究生提出不合理要求
已经有10人回复
萌生出自己或许不适合搞科研的想法,现在跑or等等看?
已经有4人回复
Materials Today Chemistry审稿周期
已经有4人回复
参与限项
已经有3人回复
实验室接单子
已经有4人回复
对氯苯硼酸纯化
已经有3人回复
求助:我三月中下旬出站,青基依托单位怎么办?
已经有12人回复
所感
已经有4人回复
要不要辞职读博?
已经有7人回复
» 抢金币啦!回帖就可以得到:
中国科学院大学功能多孔组装材料实验室招聘启事
+2/310
限广州,征女友
+2/190
DNA甲基化位点定量试剂盒(qPCR版)-适合特定基因位点5mC定量检测
+1/82
原子层沉积(ALD)磁控溅射PECVD等微纳代工服务:18817872921
+1/82
深圳大学材料学院黄妍斐教授课题组诚招2026年秋季入学博士生
+1/74
上海大学昝鹏教授、军事医学研究院伯晓晨研究员/倪铭副研究员 课题组招聘博士生
+1/73
浙江师范大学国家杰青杨启华教授团队招收2026年博士研究生
+1/68
时间的眼神
+1/62
留学导师避雷——望传播
+1/58
真诚找对象
+1/57
北京—征老婆
+1/51
深圳信息职业技术大学-博后招聘(优秀可留校)
+1/28
北京化工大学化学工程学院杨琪教授 邱介山教授,招收储能电池方向博士研究生
+1/24
华中科技大学袁书珊教授团队招2026年申请审核制博士生1-2名
+1/13
武汉双一流高校干细胞与肿瘤生物学团队招聘2026级申请考核制博士生
+1/8
【博士后/科研助理招聘-北京理工大学-集成电路与电子学院-国家杰青团队】
+1/5
南京邮电大学材料科学与工程学院柔性电子研究所2026年招聘公告
+1/4
中国科学院大学-杨晗课题组-诚聘-博士后、副研究员
+1/3
上海海洋大学水生态修复团队2026年博士招生需求
+1/1
一文读懂层流压差式流量控制器在氢能行业的应用
+1/1
zhangzhiweia(金币+6, 翻译EPI+1): 2010-12-21 13:12:21
|
To explore probable electrode reaction pathways of adsorption H on Pt(100) surface, we applied energetically the most stable configuration obtained from the H adsorption to map out the minimum-energy paths(MEP) by using elastic band method. Here, a (4×1) surface unit cell with a slab of three layers thickness(36 Pt atoms) was chosen to simulate the adsorption of H on Pt(100) surface(the single structure determined lattice constant of 8.324Å and was used for the production of Pt(100) surface). The slab was repeated periodically with a 13.962Å of vacuum region between the slabs. Plausible intermediates for the H-Pt(100) interactions was initially optimized by placing H atoms at two different active sites on the Pt(100) surface, including “Pt-bridge site and Pt-hollow site”, corresponding to the structure of Pt(100) surface. Obviously, the anode would lose electrons during electrode reaction. The adsorption energy and Pt-H distance for hydrogen on Pt(100) surface after optimization are presented in Table 1. The negative adsorption energy comes from the computational procedure in which the geometry optimization is carried out only in no-spin-polarization calculation. As can be seen from the Table 1, the adsorption energy for bridge site is larger than the hollow site’s. Namely, bridge site on the terrace is stable after geometry optimization, the hollow site on the terrace maybe the intermediate state. Furthermore, we analyzed Pt-H distance for hydrogen on Pt(100) surface(seen from table 1), Before electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.035 Å, 1.613 Å, respectively. The H-Pt distance at bridge site is shorter than that of hollow site. That is to say, the bridge site is more stable than another one. After electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.029 Å, 1.607 Å, respectively. Zhang******* used the Morse Potential to calculate Pt-H distance at the most stable state is 1.79 Å, which result is similar to ours. It is found that the distance of Pt-H becomes shorter during the electrode reaction. Compared the bridge sites with the hollow sites, for Pt-H distance, it shows that the latter is shorter than the former and it is indicated that the adsorption energy for the latter will be larger. In conclusion, adsorption of H on Pt(100) can take place and the best adsorption site is the bridge site. |
2楼2010-12-15 23:28:02
3楼2010-12-18 11:06:51












回复此楼