24小时热门版块排行榜    

查看: 1570  |  回复: 14
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

fyq98

木虫 (正式写手)

[交流] 【求助】能不能在C(R)上赋予范数?

【求助】能不能在C(R)上赋予范数?
回复此楼
克难奋进
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

Pchief

铁杆木虫 (正式写手)


fyq98(金币+1):谢谢参与
在汪林编的《泛函分析中的反例》(高等教育出版社1994年,本版块中应该有下载)第37~38页找到如下结果:

如果一个无穷维线性空间的Hamel维数——即所有Hamel基的势中的最小者——为a,则该空间可赋予完备范数的充分必要条件是a^b = a 其中 b 代表可数集的势。

[ Last edited by Pchief on 2010-10-5 at 17:08 ]
8楼2010-10-05 17:07:44
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

Pchief

铁杆木虫 (正式写手)

引用回帖:
Originally posted by fyq98 at 2010-10-05 17:30:10:

这就有一个问题了:C(R)是否以多项式函数为其稠密子集?C[a,b]上一定成立,但R非紧。

要谈稠密这个概念,你先得有个拓扑,现在 C(R) 上尚未赋予范数,试问你的拓扑从何而来?
10楼2010-10-05 17:50:15
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 fyq98 的主题更新
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见