|
|
★ ★ ★ ★ ★ 小木虫: 金币+0.5, 给个红包,谢谢回帖 feixiaolin: 金币+4 2014-12-24 20:15:45
令u=dy/dx ,y''=du/dx=du/dy*dy/dx=u*du/dy ,
代入原方程中得:u*du/dy+a*u^2+b*u+c=0
u*du/{u^2+b/a*u+c/a}=-a*dy
[u-b/(2*a)+b/(2*a)]*du/{[u+b/(2*a)]^2*u+c/a-b^/(4*a^2)}=-a*dy
[u+b/(2*a)]*du/{[u+b/(2*a)]^2*u+c/a-b^/(4*a^2)})-b/(2*a)*du/{[u+b/(2*a)]^2*u+c/a-b^/(4*a^2)}=-a*dy
[u+b/(2*a)]*du/{[u+b/(2*a)]^2*u+(4*a*c-b^2)/(4*a^2)}
-b/(2*a)*d[u+b/(2*a)]/{[u+b/(2*a)]^2*u+(4*a*c-b^2)/(4*a^2)}=-a*dy
讨论:
(1)4*a*c-b^2=0
Ln[u+b/(2*a)] +b/(2*a)/[u+b/(2*a)]=C-a*y ,C为积分常数。
Ln[y'+b/(2*a)] +b/(2*a)/[y'+b/(2*a)]=C-a*y
(2)4*a*c-b^2>0 ,令[4*a*c-b^2]/(4*a^2)=β^2
1/2*Ln{[u+b/(2*a)]^2+β^2} + Arctg{[u+b/(2*a)]/β}/β=C-a*y
1/2*Ln{[y'+b/(2*a)]^2+β^2} + Arctg{[y'+b/(2*a)]/β}/β=C-a*y
(3) 4*a*c-b^2<0 ,令[4*a*c-b^2]/(4*a^2)=-β^2
(2*a*β-b)/(4*a*β)*Ln{[u+b/(2*a)]-β}+ (2*a*β+b)/(4*a*β)*Ln{[u+b/(2*a)]+β}=C-a*y
(2*a*β-b)/(4*a*β)*Ln{[y'+b/(2*a)]-β}+ (2*a*β+b)/(4*a*β)*Ln{[y'+b/(2*a)]+β}=C-a*y
无论如何,得出的降阶方程是一个非线性方程,过于复杂了,求不出解析解,只能求数值解了。 |
|