|
|
[交流]
【求助】这组数据应该如何分析 已有3人参与

请各位帮忙看一下这组数据,s-1~7为说明变量,我想研究目的变量 与说明变量之间的关系,也就是说,哪几个说明变量与目的变量的相关性最高,最能影响目的变量
应该用什么模型分析为好?之前用R的glm模型的高斯分布分析过,也得出了最适合模型,但是从图上来看感觉比较奇怪,点比较分散,没出现线型的分布。不知道这是说明是说明变数与目的变数之间的相关性很低?还是我用的模型不对?请高手帮忙指点一下,非常感谢!!!
上传的两个图片一个是一部分数据,另一个是AIC~-6.11得最优模型生成的分布图
以下是用r的分析
> step(model)
Start: AIC=-1.47
shd ~ kbi + khr + zfk + kwhb + hkkr + iwa + tks
Df Deviance AIC
- kwhb 1 2.2608 -3.4549
- tks 1 2.2653 -3.3463
- iwa 1 2.2909 -2.7277
2.2601 -1.4726
- hkkr 1 2.3916 -0.3625
- zfk 1 2.4714 1.4440
- kbi 1 2.4897 1.8491
- khr 1 2.7075 6.4621
Step: AIC=-3.45
shd ~ kbi + khr + zfk + hkkr + iwa + tks
Df Deviance AIC
- tks 1 2.2687 -5.2643
- iwa 1 2.2944 -4.6432
2.2608 -3.4549
- hkkr 1 2.3920 -2.3537
- kbi 1 2.4897 -0.1508
- zfk 1 2.6246 2.7506
- khr 1 2.7076 4.4630
Step: AIC=-5.26
shd ~ kbi + khr + zfk + hkkr + iwa
Df Deviance AIC
- iwa 1 2.3169 -6.1077
2.2687 -5.2643
- hkkr 1 2.3995 -4.1806
- kbi 1 2.5146 -1.6032
- zfk 1 2.6335 0.9369
- khr 1 2.7118 2.5480
Step: AIC=-6.11
shd ~ kbi + khr + zfk + hkkr
Df Deviance AIC
2.3169 -6.1077
- hkkr 1 2.4217 -5.6752
- zfk 1 2.6858 0.0184
- kbi 1 2.8072 2.4500
- khr 1 2.9502 5.1836
Call: glm(formula = shd ~ kbi + khr + zfk + hkkr, family = gaussian, data = dt)
Coefficients:
(Intercept) kbi khr zfk hkkr
0.2931 7.3872 -0.3329 0.2187 -5.5888
Degrees of Freedom: 54 Total (i.e. Null); 50 Residual
Null Deviance: 4.024
Residual Deviance: 2.317 AIC: -6.108
> model<-glm(shd~kbi+khr+zfk+hkkr,data=dt,family=gaussian)
> summary(model)
Call:
glm(formula = shd ~ kbi + khr + zfk + hkkr, family = gaussian,
data = dt)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.43642 -0.14177 0.01095 0.11418 0.46965
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.29308 0.08327 3.520 0.000931 ***
kbi 7.38722 2.27101 3.253 0.002050 **
khr -0.33293 0.09005 -3.697 0.000542 ***
zfk 0.21866 0.07750 2.822 0.006839 **
hkkr -5.58877 3.71679 -1.504 0.138961
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 0.04633779)
Null deviance: 4.0235 on 54 degrees of freedom
Residual deviance: 2.3169 on 50 degrees of freedom
AIC: -6.1077
Number of Fisher Scoring iterations: 2

[ Last edited by javeey on 2010-5-8 at 14:25 ] |
» 猜你喜欢
» 本主题相关价值贴推荐,对您同样有帮助:
|