24小时热门版块排行榜    

CyRhmU.jpeg
查看: 620  |  回复: 4
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

yeyejingjing

新虫 (初入文坛)

[求助] show that the space of polynomials is not complete已有1人参与

How to show that the space of polynomials is not complete. And the norm is defined by the maximum of the absolute value of the coefficient of polynomial.
For example, p(x)=\sum_{k=0}^n c_{k}x^{k}, ||p||=max_{k}|c_{k}|.

Help~!!!!
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

junefi

铁杆木虫 (正式写手)

【答案】应助回帖

感谢参与,应助指数 +1
Consider a sequence of polynomials . We can see that is Cauchy (with respect to the above norm) but actually which is not in the space of polynomials.
理论改变世界!
2楼2015-10-28 15:11:39
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

junefi

铁杆木虫 (正式写手)

【答案】应助回帖

★ ★ ★ ★ ★ ★ ★ ★ ★ ★
yeyejingjing(Edstrayer代发): 金币+10, good 2015-10-29 02:13:31
引用回帖:
3楼: Originally posted by yeyejingjing at 2015-10-28 15:18:05
这个不对吧,,如果是这个序列的话,,||pn||=max{1/i!}=1...

1, The definition of a complete metric space M: if every Cauchy sequence in M converges in M.
2, is Cauchy: for , .
3, is not in the space of polynomials.
理论改变世界!
4楼2015-10-28 15:28:20
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 yeyejingjing 的主题更新
信息提示
请填处理意见