| 查看: 12781 | 回复: 87 | ||||||||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||||||||
BlueGuy荣誉版主 (正式写手)
懒懒的小虫虫
|
[交流]
生物信息学专题-生物版,医学版和信息科学版共同创建已有2人参与
|
|||||||
|
为进一步建好小木虫的专业学科版,现由生物版、医学版和信息科学版共同创建生物信息学专题,欢迎大家积极参与! [ Last edited by fishery on 2005-6-16 at 21:05 ] |
» 收录本帖的淘帖专辑推荐
生物信息学 | 高通量测序 | 生物信息-分析与挖掘 | ENVIRON TECHNOL |
刘安安 |
» 本帖已获得的红花(最新10朵)
» 猜你喜欢
博士读完未来一定会好吗
已经有27人回复
投稿精细化工
已经有4人回复
高职单位投计算机相关的北核或SCI四区期刊推荐,求支招!
已经有4人回复
导师想让我从独立一作变成了共一第一
已经有9人回复
到新单位后,换了新的研究方向,没有团队,持续积累2区以上论文,能申请到面上吗
已经有11人回复
读博
已经有4人回复
JMPT 期刊投稿流程
已经有4人回复
心脉受损
已经有5人回复
Springer期刊投稿求助
已经有4人回复
小论文投稿
已经有3人回复
» 本主题相关价值贴推荐,对您同样有帮助:
生物信息学
已经有184人回复
电子科技大学生物信息学方向招收3名调剂研究生
已经有29人回复
诚招生物信息学博士研究生一位
已经有38人回复
【Journal Club】第3讲 水稻全基因组基因网络生物信息学平台的建立
已经有33人回复
生物信息学 找工作
已经有20人回复
华大基因发布生物信息学软件
已经有11人回复
请问生物信息学的标书形式审查完了没?
已经有10人回复
【原创】电子科技大学生命学院2011年研究生调剂--生物信息学
已经有20人回复
生物信息学网址(国外)
已经有22人回复
BlueGuy
荣誉版主 (正式写手)
懒懒的小虫虫
- 应助: 0 (幼儿园)
- 贵宾: 4.4
- 金币: 2908.4
- 红花: 3
- 帖子: 796
- 在线: 6.5小时
- 虫号: 50895
- 注册: 2004-07-15
- 性别: GG
- 专业: 细胞增殖、生长与分化
★
miRNA(金币+1):谢谢!!
miRNA(金币+1):谢谢!!
|
5 分子进化 分子进化钟的发现与中性理论的提出,极大地推动了进化尤其是分子进化研究,填补了人们对分子进化即微观进化认识上的空白,推动进化论的研究进入分子水平,并建立了一套依赖于核酸、蛋白质序列信息的理论方法。分子进化研究有助于进一步阐明物种进化的分子基础,探索基因起源机制,从基因进化的角度研究基因序列与功能的关系。 5.1 分子进化钟与中性理论 60年代早期“分子进化钟”的发现与60年代末期“中性理论”的提出是本世纪进化学的重大事件,是古老的进化学与新生的分子生物学两者“杂交”的产物。它们的相继问世极大地推动了进化尤其是分子进化研究,填补了人们对分子进化即微观进化认识上的空白,并在生物医学等领域产生了广泛影响。 随着不同生物来源的大量蛋白质序列的确定,Zucherkandl等发现:某一蛋白在不同物种间的取代数与所研究物种间的分歧时间接近正线性关系,进而将分子水平的这种恒速变异称为“分子钟”。 支持进化钟存在的证据来自哺乳动物与其它脊椎动物诸如血清白蛋与转铁蛋白等的免疫学(如微量补体固定)定量比较。人们发现多肽间的免疫距离(如抗原性)与其氨基酸取代百分数成良好的线性相关,如鸟溶菌酶、哺乳动物RNase、细胞色素C与白蛋白、大肠杆菌色氨酸合成酶等。虽然这种相关性的分子基础尚不清楚,但这种客观存在经过反复验证后是不容置疑的。免抗血清由此成为初步估算球形单体蛋白间序列差异的有效工具,但其适用范围0-30%的氨基酸差异。 自从进化钟假设提出之后,存在许多反驳它的相反事实与异议。这些异议主要针对序列进化的恒速。分子进化钟的最明显的例外之一是分子序列证据与化石证据在人类起源时间上的差异。60年代中期,许多人类学家认为人类在3000年前与我们最近的亲属-- 非洲猿分歧。根据分子钟假设,分歧3000万年的物种氨基酸序列差异的应达4-5%、非重复序列DNA差异应约为8%,但实测值分别为0.8%与1.1%。对这种6倍左右的差别有两种解释。许多人类学家倾向于怀疑钟的存在,并认为在高等灵长类中分子进化速率下降。总之,虽然大部分分子进化学家同意序列进化与分歧时间密相关,但进化是以年限还是以代限为刻度则仍有分歧与争议;而且因为纵多因素的影响,与进化钟相左的数据,无论是用氨基酸、核苷酸序列差异、免疫学距离,还是用DNA杂交复性等参数,均不断有所报道,其论争预计将继续下去。 . 自从60年代初发现分子进化钟--“分子进化速率在不同种系中恒定”以来,人们又陆续发现蛋白质中氨基酸的置换是随机而非模式性的;DNA在哺乳动物种系的总变异速率远远高于形态上的变异速率并远远超出人们的预期的大于0.5核苷酸/ 基因组/ 年;蛋白质电泳表明物种内存在大量的变异即广泛的种内多态性,且这些多态性并无可见的表型效应,与环境条件亦无明显相关。以上这些都是新达尔文主义与综合进化理论所难以解释的。 面对上述问题,日本群体遗传学家木村资生(Motoo Kimura)提出:(1) 进化过程中的核苷酸置换其绝大部分是中性或近似中性的突变随机固定的结果而不是正向达尔文选择的结果:(2) 许多蛋白质多态性必须在选择上为中性或近中性,并在群体中由突变引入与随机灭绝间两者的平衡维持。 上述论著问世遭遇到经典进化学家的强烈批判。他们认为新的分子生物学数据完全可以用新达尔文主义的原理来解释。直至现在,选择论者与中性论者的议争仍在继续。这两大学派的本质区别可通过它们各自对突变基因如何在物种内置换老基因这一进化过程的不同解释来洞悉。每一置换刚出现时在群体内均为稀有的突变等位基因,随后扩散至个群体并被固定,即频率达100%。选择论者认为:一个突变的等位基因在物种内扩散,就必需具有某些选择上的优势,如在选择上为中性,就必需与一选择上具优势的基因紧密连锁,通过“搭车”而达到较高频率。与此相反,中性论者认为:一些突变在没有任何选择优势的情况下也能自身在群体中扩散。如果一突变体在选择上等同于已存在的等位基因,其命运将取决于机会-随机,其频率存在上下起伏,因为在每代每一雌、雄个体所生的大量配子中只有很少数配子最终被“采用”以形成合子以及相应的个体,并出现在下一代中。在这种随机漂变(random drift)中,绝大部分突变等位基因随机丢失,但有一少部分在群体中被固定下来。如果中性突变在分子水平上普遍存在,且随机漂变在很长时间(如百万年)一直延续,群体的遗传组成将发生显著性改变。群体中出现的任何中性突变其最终固定的概率都等于其原始频率,其固定的平均时间四倍于有效群体的大小(它近似等于每一代参与繁殖的个体数,通常远小于物种的个体总数)。中性理论并非认为中性基因无功能,而仅是认为不同的等位基因在促进个体的生存与生殖方面是有等同的效果。此外,还需强调个体基因突变与群体基因置换的差别,因为只有后者才与分子进化相关。 自Zuckerkandl与Pauling的早期工作以来,已经知道在蛋白质进化中结构和化学性质上相似的氨基酸间的替换比不相似间的替换更为频繁。他们认为,这种“保守的”的替换看来只造成分子功能的微小改变,因而更容易“被自然选择接受”。同时他们指出,关于氨基酸残基的最重要性质是什么,“化学家和生物学家间显然没有同样的见解”。从中性学说的立场看,保守替换的性质,只需注意到两种氨基酸间的差异越小,它们等于选择等价而不是突变有害的概率就越大,就很容易加以解释。因此,选择上呈中性的替换在得类似的氨基酸间则概率越高,而这类氨基酸的进化替换由于随机遗传漂变则出现得更为频繁。 在阐明分子进化中突变型替换的保守性的同时,有越来越多的证据表明,功能上较不重要的分子或某一分子较不重要的部分,其进化(以突变型替换表示)比那些较重要的要快些。中性论和选择论间的差别,在它们对快速进化的分子(如血纤蛋白肽)或分子的某部分(如胰岛素原的C肽)进行解释时,可以最清楚地看出,按中性学说解释,它们在功能上不重要,因而大多数突变是中性的,突变通过随机漂变而迅速积累。另一方,选择论的解释是,快速进化的分子或分子的某部分或许有某些尚不知道的功能,并且通过积累许多由正达尔文选择产生的较微有利的突变,而经历了迅速的适应性方面的改善。这两种解释那一种更为恰当还有待积累更多数据以后才能判定。为了加深我们对分子进化机制的理解,很有必要研究突变型替换的模式与分子的三级结构和功能的相互关系。 综上,中性学说(或者更确切地说是中性突变-随机漂变假说)是分子生物学与群体遗传学交融的产物。它不象传统的综合理论(或新达尔文派的观点),它明确主张:进化中大多数突变型的置换,不是由于正达尔文选择,而是由选择上呈中性或近中性的突变型的随机固定所致。它还断言,分子水平上大多数种内遗传多态性,象以蛋白质多态性形式展现出来的那样,是选择上呈中性或近中性的,并靠着突变输入和等位基因的随机清除或固定这两者之间的平衡而在物种中维持。应该说,这一理论对于人们所认识的分子进化众多现象与规律的阐释比新达尔文更为科学,且提出的多项预测被随后的实验研究所证实。问题是,它作为一种更基本层次-分子水平的进化理论未能给更高层次的进化提供理性阐释与描写。中性论者过多地注目于与功能无关的分子进化,而忽视了与功能相关的分子进化现象与规律的探索,这恐怕是中性理论之所以能问世,但同时又先天性地带上无视宏观进化,对宏观进化束手无策这一天然缺陷的症结所在。 5.2 进化树 分子钟的发现对于进化研究具有十分重要的意义。它不仅能用于粗略估计不同类群生物间的进化时间,亦可用于构建进化树。实际上,分子钟发现不久,蛋白质序列分析即被广泛用于生物的长时进化研究。 根据蛋白质的序列或结构差异关系可构建分子进化树(evolutionary tree)或种系发生树(phylogenetic tree)。进化树给出分支层次或拓扑图形,它是产生新的基因复制或享有共同祖先的生物体的歧异点的一种反映,树枝的长度反映当这些事件发生时就存在的蛋白质与现在的蛋白质之间的进化距离。根据进化树不仅可以研究从单细胞有机体到多细胞有机体的生物进化过程,而且可以粗略估计现存的各类种属生物的分歧时间。通过蛋白质的分子进化树分析,为从分子水平研究物种进化提供了新的手段,可以比较精确的确定某物种的进化地位。对于物种分类问题,蛋白质的分子进化树亦可作为一个重要的依据。 构建进化树的方法包括两种:一类是序列类似性比较,主要是基于氨基酸相对突变率矩阵(常用PAM250)计算不同序列差异性积分作为它们的差异性量度(序列进化树);另一类在难以通过序列比较构建序列进化树的情况下,通过蛋白质结构比较包括刚体结构叠合和多结构特征比较等方法建立结构进化树。 序列进化树 构建序列进化树的主要步骤是比对,建立取代模型,建立进化树以及进化树评估。 1.建立数据模型(比对) 建立一个比对模型的基本步骤包括:选择合适的比对程序;然后从比对结果中提取系统发育的数据集,至于如何提取有效数据,取决于所选择的建树程序如何处理容易引起歧义的比对区域和插入/删除序列(即所谓的indel状态或者空位状态)。 一个典型的比对过程包括:首先应用CLUSTALW程序,然后进行手工比对,最后提交给一个建树程序。这个过程有如下特征选项:(1)部分依赖于计算机(也就是说,需要手工调整);(2)需要一个先验的系统发育标准(即需要一个前导树);(3)使用先验评估方法和动态评估方法(推荐)对比对参数进行评估;(4)对基本结构(序列)进行比对(对于亲水氨基酸,推荐引入部分二级结构特征);(5)应用非统计数学优化。这些特征选项的取舍依赖于系统发育分析方法。 2.决定取代模型 取代模型既影响比对,也影响建树;因此需要采用递归方法。对于核酸数据而言,可以通过取代模型中的两个要素进行计算机评估,但是对于氨基酸和密码子数据而言,没有什么评估方案。其中一个要素是碱基之间相互取代的模型;另外一个要素是序列中不同位点的所有取代的相对速率。还没有一种简单的计算机程序可以对较复杂的变量(比如,位点特异性或者系统特异性取代模型)进行评估,同样,现有的建树软件也不可能理解这些复杂变量。 3.建树方法 三种主要的建树方法分别是距离、最大节约(maximum parsimony, MP)和最大似然(maximum likelihood,ML)。最大似然方法考察数据组中序列的多重比对结果,优化出拥有一定拓扑结构和树枝长度的进化树,这个进化树能够以最大的概率导致考察的多重比对结果。距离树考察数据组中所有序列的两两比对结果,通过序列两两之间的差异决定进化树的拓扑结构和树枝长度。最大节约方法考察数据组中序列的多重比对结果,优化出的进化树能够利用最少的离散步骤去解释多重比对中的碱基差异。 距离方阵方法简单的计算两个序列的差异数量。这个数量被看作进化距离,而其准确大小依赖于进化模型的选择。然后运行一个聚类算法,从最相似(也就是说,两者之间的距离最短)的序列开始,通过距离值方阵计算出实际的进化树,或者通过将总的树枝长度最小化而优化出进化树。用最大节约方法搜索进化树的原理是要求用最小的改变来解释所要研究的分类群之间的观察到的差异。最大似然方法评估所选定的进化模型能够产生实际观察到的数据的可能性。进化模型可能只是简单地假定所有核苷酸(或者氨基酸)之间相互转变的概率一样。程序会把所有可能的核苷酸轮流置于进化树的内部节点上,并且计算每一个这样的序列产生实际数据的可能性(如果两个姐妹分类群都有核苷酸“A”,那么,如果假定原先的核苷酸是“C”,得到现在的“A”的可能性比起假定原先就是“A”的可能性要小得多)。所有可能的再现(不仅仅是比较可能的再现)的几率被加总,产生一个特定位点的似然值,然后这个数据集的所有比对位点的似然值的加和就是整个进化树的似然值。 4.进化树搜索 单一的进化树的数量会随着分类群数量的增长而呈指数增长,从而变为一个天文数字。由于计算能力的限制,现在一般只允许对很小一部分的可能的进化树进行搜索。具体的数目主要依赖于分类群的数量、优化标准、参数设定、数据结构、计算机硬件以及计算机软件。 有两种搜索方法保证可以找到最优化的进化树:穷举法和树枝 跳跃法(BB)。对于一个很大的数据集,这两种方法都很不实用。对分类群数量的限制主要取决于数据结构和计算机速度,但是对于超过20个分类群的数据集,BB方法很少会得到应用。穷举法要根据优化标准,对每一个可能的进化树进行评估。BB方法提供一个逻辑方法,以确定那些进化树值得评估,而另一些进化树可被简单屏蔽。因此BB方法通常要比穷举法快得多。 绝大多数分析方法都使用“启发式”的搜索。启发式现搜索出相近的次优化的进化树家族(“岛屿”),然后从中得到优化解(“山顶”)。不同的算法用不同程度的精确性搜索这些岛屿和山顶。最彻底也是最慢的程序(TBR,tree bisection-reconnection,进化树对分重接)先把进化树在每一个内部树枝处劈开,然后以任意方式将劈开的碎片重新组合起来。最快的算法只是检查一下相邻终端的不太重要的重新组合,因此倾向于找到最近的岛屿的山顶。 降低搜索代价的最好方法是对数据集进行剪除。影响优化搜索策略选择的因素(数据量,数据结构,时间量,硬件,分析目的)太复杂,无法推荐一个简单可行的处方。因此进行搜索的用户必须对数据非常熟悉且有明确的目标,了解各种各样的搜索程序及自己硬件设备和软件的能力。 除上述当前应用最广的方法外,还有大量的建立和搜索进化树的其它方法。这些方法包括Wagner距离方法和亲近方法(距离转化方法);Lake的不变式方法(一个基于特征符的方法,它选择的拓扑结构包含一个意义重大的正数以支持颠换);Hadamard结合方法(一个精细的代数方阵方法,对距离数据或者观察到的特征符进行修正);裂解方法(这个方法决定在数据中应该支持哪一个基于距离的可选的拓扑结构);四重奏迷惑(Quartet puzzling)方法可以为ML建树方法所应用,这个算法相对而言是个较快的进化树搜索算法。 5.确定树根 上述的建树方法所产生的都是无根树(进化树没有进化的极性)。为了评估进化假说,通常必须要确定进化树的树根。确定系统发育进化树的树根并不简单问题。一种确定树根的好方法就是分析时加入一个复制的基因。如果来自绝大多数物种或者所有物种的所有的平行基因在分析时都被包含进去,那么从逻辑上我们就可以把进化树的树根定位于平行基因进化树的交汇处,当然要假定在所有进化树中都没有长树枝问题。 6.评估进化树和数据 现在已经有一些程序可以用来评估数据中的系统发育信号和进化树的健壮性。对于前者,最流行的方法是用数据信号和随机数据作对比实验(偏斜和排列实验);对于后者,可以对观察到的数据重新取样,进行进化树的支持实验(非参数自引导和对折方法)。似然比例实验可以对取代模型和进化树都进行评估。 5.3结构进化树 随着X-ray、NMR等实验技术的的进步,蛋白质结构数据的数量日益增多,结构精度也越来越高,使得结构比较更为可行。目前已经发现许多蛋白的一级序列差异很大,难以通过序列比对进行分子进化的研究,但它们的空间拓扑结构仍然很相似,可以进行结构叠合比较、分析它们之间的进化关系,这表明结构比较可以比序列比较获得更多更精确的结构信息。研究发现蛋白质结构比序列的保守性更强,进化过程中蛋白质序列可能发生变化,但它的折叠模式更为保守,即使是70%的序列发生变化,它的折叠模式也不会有很大的改变[1]。蛋白质分子的结构比较与蛋白质一级序列比较法相比,具有更高的优越性。 目前有关蛋白质结构比较的研究方法很多,主要有刚体结构叠合比较、多特征的结构比较等方法。前者用比较后确定的拓扑等价位点的个数或等价位点Cα原子距离的均方根值作为不同结构间差异性的量度(结构进化树);后者用蛋白质结构的多项特征如残基的物理特性、残基的空间倾向性、主侧链的方向、主链的二面角、二级结构类型和主侧链的可接近性等综合指标作为结构的差异性量度,有时称此类方法构建的结构进化树为“类结构”进化树。 刚体叠合所构建的进化树适用于同源蛋白质结构预测的骨架结构的选择,基于序列的进化树便于描述类似性较大的蛋白质的进化关系,而结构的多特征比较则适用于分析分歧较大的蛋白质结构。 1.刚体结构叠合比较 当已知2个以上同源蛋白质的晶体结构时,可将每两套结构的原子坐标进行最佳叠合,确定类似结构中完整的一套残基等价位点,并使等价位点间的距离平方和最小,这样便得到各结构的拓扑等价区。通常将结构简化为一系列Cα位置,等价位点被定义为在重叠结构中位于某个特定距离范围(不大于3埃)之内的Cα原子。通过计算不同结构等价位点的个数或计算多个结构的等价位点Cα距离的均方根值作为不同结构间差异性的度量。再根据一般的建树方法,给出几个结构的进化关系。 刚体结构叠合方法需要蛋白质的晶体结构数据的质量要高。事实上,相对于序列而言,已测定的蛋白质晶体结构很少,许多同源蛋白质的结构并不知道。其次,尽管同源蛋白质具有相同的折叠结构,它们的二级结构成分则经历形变、相对平移和旋转使侧链达到优化的包装以适应进化的压力。对于序列相同率为30%的两个蛋白质,由刚体叠合所确定的拓扑等残基的均方根差大约为1.5埃,而且残基数可能只占全部残基数的1/3。它可能不足以进行结构比较。因此需要发展一种更灵活的确定拓扑等价位点的方法,并且要把二级结构成分的相对运动和变形也考虑进去。 2.多特征结构比较 多特征结构比较以及构建“类结构”进化树的原理与基于残基匹配记分方法(常用PAM250矩阵)进行多序列比较和构建序列进化树的原理相同。包括以下步骤:(1)动态规划配准和结构匹配;(2)多个结构的多特征比较;(3)多特征结构比较的距离量度;(4)绘制进化树图。 相关软件 Phylip PHYLIP是一个包含了大约30个程序的软件包,这些程序基本上囊括了系统发育的所有方面。PHYLIP是免费软件,并且可以在很多平台上运行(Mac, DOS, Unix, VAX/VMS, 及其它)。PHYLIP目前已经是最广泛使用的系统发育程序。 PAUP 开发PAUP的目的是为系统发育分析提供一个简单的,带有菜单界面的,与平台无关的,拥有多种功能(包括进化树图)的程序。PAUP 3.0只建立于MP相关的进化树及其分析功能;而PAUP 4.0已经可以针对核苷酸数据进行与距离方法和ML方法相关的分析功能,以及其它一些特色。 除了PAUP和PHYLIP以外,还有其它一些系统发育程序,这些程序包括FastDNAml, MACCLADE, MEGA plus METREE, MOLPHY和PAML。 PHYLOGENETIC RESOURCES http://www.ucmp.berkeley.edu/subway/phylogen.html PHYLOGENY PROGRAMS http://evolution.genetics.washington.edu/phylip/software.html PHYLOGENETIC ANALYSIS COMPUTER PROGRAMS http://phylogeny.arizona.edu/tree/programs/programs.html BIOCATALOG MOLECULAR EVOLUTION http://www.ebi.ac.uk:/biocat/phylogeny.html PHYLIP http://evolution.genetics.washington.edu/phylip.html |
7楼2005-06-07 17:13:34
BlueGuy
荣誉版主 (正式写手)
懒懒的小虫虫
- 应助: 0 (幼儿园)
- 贵宾: 4.4
- 金币: 2908.4
- 红花: 3
- 帖子: 796
- 在线: 6.5小时
- 虫号: 50895
- 注册: 2004-07-15
- 性别: GG
- 专业: 细胞增殖、生长与分化
2楼2005-06-07 16:23:53
BlueGuy
荣誉版主 (正式写手)
懒懒的小虫虫
- 应助: 0 (幼儿园)
- 贵宾: 4.4
- 金币: 2908.4
- 红花: 3
- 帖子: 796
- 在线: 6.5小时
- 虫号: 50895
- 注册: 2004-07-15
- 性别: GG
- 专业: 细胞增殖、生长与分化
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ...
miRNA(金币+2):谢谢!!
liubird(金币+50):支持斑竹开展有意义的活动!
miRNA(金币+2):谢谢!!
liubird(金币+50):支持斑竹开展有意义的活动!
|
概述 当前人类基因组研究已进入一个重要时期,2004年已获得人类基因组的全部序列,这是基因组研究的转折点和关键时刻,意味着人类基因组的研究将全面进入信息提取和数据分析阶段,即生物信息学发挥重要作用的阶段。到1999年12月15日发布的第115版为止,GenBank中的DNA碱基数目已达46亿5千万,DNA序列数目达到535万;其中EST序列超过339万条; UniGene的数目已达到7万个;已有25个模式生物的完整基因组被测序完成,另外的70个模式生物基因组正在测序当中;到2005年初为止,人类基因组的序列完成测定;同时功能基因组和蛋白质组的大量数据已开始涌现。如何分析这些数据,从中获得生物结构、功能的相关信息是基因组研究取得成果的决定性步骤。 生物信息学是在此背景下发展起来的综合运用生物学、数学、物理学、信息科学以及计算机科学等诸多学科的理论方法的崭新交叉学科。生物信息学是内涵非常丰富的学科,其核心是基因组信息学,包括基因组信息的获取、处理、存储、分配和解释。基因组信息学的关键是“读懂”基因组的核苷酸顺序,即全部基因在染色体上的确切位置以及各DNA片段的功能;同时在发现了新基因信息之后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行药物设计。了解基因表达的调控机理也是生物信息学的重要内容,根据生物分子在基因调控中的作用,描述人类疾病的诊断、治疗内在规律。它的研究目标是揭示"基因组信息结构的复杂性及遗传语言的根本规律",解释生命的遗传语言。生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿。 近来的研究表明,基因组不仅是基因的简单排列,它有其特有的组织结构和信息结构,这种结构是在长期的演化过程中产生的,也是基因发挥其功能所必须的。弄清楚生物体基因组特有的组织结构和信息结构,解译生命的遗传语言的关键。 目前在数据库中已经有越来越多的模式生物全基因组序列,第一个人类染色体全序列--第22号染色体的测序工作已经在1999年12月完成,整个人类基因组计划工作草图将在最近完成。这无疑给基因组组织结构和信息结构的研究工作提供了大量的第一手材料,同时也为基因组研究取得突破性进展提供了可能。人类对基因的认识,将从以往的对单个基因的了解,上升到在整个基因组水平上考察基因的组织结构和信息结构,考察基因之间在位置、结构和功能上的相互关系。 从目前生物信息学的研究情况来看,国际上公认的生物信息学的研究内容,大致包括以下几个方面: 生物信息的收集、存储、管理与提供。包括建立国际基本生物信息库和生物信息传输的国际联网系统;建立生物信息数据质量的评估与检测系统;生物信息的在线服务;生物信息可视化和专家系统。 基因组序列信息的提取和分析。包括基因的发现与鉴定,如利用国际EST 数据库 (dbEST) 和各自实验室测定的相应数据,经过大规模 并行计算发现新基因和新SNPs以及各种功能位点;基因组中非编码区的信息结构分析,提出理论模型,阐明该区域的重要生物学功能;进行模式生物完整基因组的信息结构分析和比较研究;利用生物信息研究遗传密码起源、基因组结构的演化、基因组空间结构与DNA折叠的关系以及基因组信息与生物进化关系等生物学的重大问题。 功能基因组相关信息分析。包括与大规模基因表达谱分析相关的算法、软件研究,基因表达调控网络的研究;与基因组信息相关的核酸、蛋白质空间结构的预测和模拟,以及蛋白质功能预测的研究。 生物大分子结构模拟和药物设计。包括RNA(核糖核酸)的结构模拟和反义RNA的分子设计;蛋白质空间结构模拟和分子设计;具有不同功能域的复合蛋白质以及连接肽的设计;生物活性分子的电子结构计算和设计;纳米生物材料的模拟与设计;基于酶和功能蛋白质结构、细胞表面受体结构的药物设计;基于DNA结构的药物设计等。 生物信息分析的技术与方法研究。包括发展有效的能支持大尺度作图与测序需要的软件、数据库以及若干数据库工具,诸如电子网络等远程通讯工具;改进现有的理论分析方法,如统计方法、模式识别方法、隐马尔科夫过程方法、分维方法、神经网络方法、复杂性分析方法、密码学方法、多序列比较方法等;创建一切适用于基因组信息分析的新方法、新技术。包括引入复杂系统分析技术、信息系统分析技术等;建立严格的多序列比较方法;发展与应用密码学方法以及其他算法和分析技术,用于解释基因组的信息,探索DNA序列及其空间结构信息的新表征;发展研究基因组完整信息结构和信息网络的研究方法等;发展生物大分子空间结构模拟、电子结构模拟和药物设计的新方法与新技术。 应用与发展研究。汇集与疾病相关的人类基因信息,发展患者样品序列信息检测技术和基于序列信息选择表达载体、引物的技术,建立与动植物良种繁育相关的数据库以及与大分子设计和药物设计相关的数据库。 利用生物信息学方法进行结构功能预测要注意的是同一问题采用不同算法,可能产生相同或不同的结果。因此,必要弄清楚某种方法的基本原理,而不是仅把算法当作一个“黑箱”。因为一种方法可能对特定实例很合适,而对另一个则完全不对。因此,本章采用原理和实用方法并重的原则进行介绍。因生物信息学覆盖面广,限于篇幅,本章并未将生物信息学的全部内容详细加以讲述,仅针对与目前分子生物学实验数据分析密切相关的生物信息学策略及实用工具进行扼要介绍,文中涉及问题的更详细信息可参考相关网站。 [ Last edited by BlueGuy on 2005-6-7 at 16:47 ] |
3楼2005-06-07 16:44:41
BlueGuy
荣誉版主 (正式写手)
懒懒的小虫虫
- 应助: 0 (幼儿园)
- 贵宾: 4.4
- 金币: 2908.4
- 红花: 3
- 帖子: 796
- 在线: 6.5小时
- 虫号: 50895
- 注册: 2004-07-15
- 性别: GG
- 专业: 细胞增殖、生长与分化
★ ★
miRNA(金币+1):谢谢!!
zhlpower(金币+1):继续加油
miRNA(金币+1):谢谢!!
zhlpower(金币+1):继续加油
|
2 生物信息数据库与查询 近年来大量生物学实验的数据积累,形成了当前数以百计的生物信息数据库。它们各自按一定的目标收集和整理生物学实验数据,并提供相关的数据查询、数据处理的服务。随着因特网的普及,这些数据库大多可以通过网络来访问,或者通过网络下载。 一般而言,这些生物信息数据库可以分为一级数据库和二级数据库。一级数据库的数据都直接来源于实验获得的原始数据,只经过简单的归类整理和注释;二级数据库是在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步整理。国际上著名的一级核酸数据库有Genbank数据库、EMBL核酸库和DDBJ库等;蛋白质序列数据库有SWISS-PROT、PIR等;蛋白质结构库有PDB等。国际上二级生物学数据库非常多,它们因针对不同的研究内容和需要而各具特色,如人类基因组图谱库GDB、转录因子和结合位点库TRANSFAC、蛋白质结构家族分类库SCOP等等。 下面将顺序简要介绍一些著名和有特色的生物信息数据库。 2.1 基因和基因组数据库 1. Genbank Genbank库包含了所有已知的核酸序列和蛋白质序列,以及与它们相关的文献著作和生物学注释。它是由美国国立生物技术信息中心(NCBI)建立和维护的。它的数据直接来源于测序工作者提交的序列;由测序中心提交的大量EST序列和其它测序数据;以及与其它数据机构协作交换数据而来。Genbank每天都会与欧洲分子生物学实验室(EMBL)的数据库,和日本的DNA数据库(DDBJ)交换数据,使这三个数据库的数据同步。到1999年8月,Genbank中收集的序列数量达到460万条,34亿个碱基,而且数据增长的速度还在不断加快。Genbank的数据可以从NCBI的FTP服务器上免费下载完整的库,或下载积累的新数据。NCBI还提供广泛的数据查询、序列相似性搜索以及其它分析服务,用户可以从NCBI的主页上找到这些服务。 Genbank库里的数据按来源于约55,000个物种,其中56%是人类的基因组序列(所有序列中的34%是人类的EST序列)。每条Genbank数据记录包含了对序列的简要描述,它的科学命名,物种分类名称,参考文献,序列特征表,以及序列本身。序列特征表里包含对序列生物学特征注释如:编码区、转录单元、重复区域、突变位点或修饰位点等。所有数据记录被划分在若干个文件里,如细菌类、病毒类、灵长类、啮齿类,以及EST数据、基因组测序数据、大规模基因组序列数据等16类,其中EST数据等又被各自分成若干个文件。 (1)Genbank数据检索 NCBI的数据库检索查询系统是Entrez。Entrez是基于Web界面的综合生物信息数据库检索系统。利用Entrez系统,用户不仅可以方便地检索Genbank的核酸数据,还可以检索来自Genbank和其它数据库的蛋白质序列数据、基因组图谱数据、来自分子模型数据库(MMDB)的蛋白质三维结构数据、种群序列数据集、以及由PubMed获得Medline的文献数据。 Entrez提供了方便实用的检索服务,所有操作都可以在网络浏览器上完成。用户可以利用Entrez界面上提供的限制条件(Limits)、索引(Index)、检索历史(History)和剪贴板(Clipboard)等功能来实现复杂的检索查询工作。对于检索获得的记录,用户可以选择需要显示的数据,保存查询结果,甚至以图形方式观看检索获得的序列。更详细的Entrez使用说明可以在该主页上获得。 (2)向Genbank提交序列数据 测序工作者可以把自己工作中获得的新序列提交给NCBI,添加到Genbank数据库。这个任务可以由基于Web界面的BankIt或独立程序Sequin来完成。 BankIt是一系列表单,包括联络信息、发布要求、引用参考信息、序列来源信息、以及序列本身的信息等。用户提交序列后,会从电子邮件收到自动生成的数据条目,Genbank的新序列编号,以及完成注释后的完整的数据记录。用户还可以在BankIt页面下修改已经发布序列的信息。BankIt适合于独立测序工作者提交少量序列,而不适合大量序列的提交,也不适合提交很长的序列,EST序列和GSS序列也不应用BankIt提交。BankIt使用说明和对序列的要求可详见其主页面。 大量的序列提交可以由Sequin程序完成。Sequin程序能方便的编辑和处理复杂注释,并包含一系列内建的检查函数来提高序列的质量保证。它还被设计用于提交来自系统进化、种群和突变研究的序列,可以加入比对的数据。Sequin除了用于编辑和修改序列数据记录,还可以用于序列的分析,任何以FASTA或ASN.1格式序列为输入数据的序列分析程序都可以整合到Sequin程序下。在不同操作系统下运行的Sequin程序都可以在ftp://ncbi.nlm.nih.gov/sequin/下找到,Sequin的使用说明可详见其网页。 NCBI的网址是:http://www.ncbi.nlm.nih.gov。 Entrez的网址是:http://www.ncbi.nlm.nih.gov/entrez/。 BankIt的网址是:http://www.ncbi.nlm.nih.gov/BankIt。 Sequin的相关网址是:http://www.ncbi.nlm.nih.gov/Sequin/。 2. EMBL核酸序列数据库 EMBL核酸序列数据库由欧洲生物信息学研究所(EBI)维护的核酸序列数据构成,由于与Genbank和DDBJ的数据合作交换,它也是一个全面的核酸序列数据库。该数据库由Oracal数据库系统管理维护,查询检索可以通过通过因特网上的序列提取系统(SRS)服务完成。向EMBL核酸序列数据库提交序列可以通过基于Web的WEBIN工具,也可以用Sequin软件来完成。 数据库网址是:http://www.ebi.ac.uk/embl/。 SRS的网址是:http://srs.ebi.ac.uk/。 WEBIN的网址是:http://www.ebi.ac.uk/embl/Submission/webin.html。 3. DDBJ数据库 日本DNA数据仓库(DDBJ)也是一个全面的核酸序列数据库,与Genbank和EMBL核酸库合作交换数据。可以使用其主页上提供的SRS工具进行数据检索和序列分析。可以用Sequin软件向该数据库提交序列。 DDBJ的网址是:http://www.ddbj.nig.ac.jp/。 4. GDB 基因组数据库(GDB)为人类基因组计划(HGP)保存和处理基因组图谱数据。GDB的目标是构建关于人类基因组的百科全书,除了构建基因组图谱之外,还开发了描述序列水平的基因组内容的方法,包括序列变异和其它对功能和表型的描述。目前GDB中有:人类基因组区域(包括基因、克隆、amplimers PCR 标记、断点breakpoints、细胞遗传标记cytogenetic markers、易碎位点fragile sites、EST序列、综合区域syndromic regions、contigs和重复序列);人类基因组图谱(包括细胞遗传图谱、连接图谱、放射性杂交图谱、content contig图谱和综合图谱等);人类基因组内的变异(包括突变和多态性,加上等位基因频率数据)。GDB数据库以对象模型来保存数据,提供基于Web的数据对象检索服务,用户可以搜索各种类型的对象,并以图形方式观看基因组图谱。 GDB的网址是:http://www.gdb.org。 GDB的国内镜像是:http://gdb.pku.edu.cn/gdb/。 2.2 蛋白质数据库 1. PIR和PSD PIR国际蛋白质序列数据库(PSD)是由蛋白质信息资源(PIR)、慕尼黑蛋白质序列信息中心(MIPS)和日本国际蛋白质序列数据库(JIPID)共同维护的国际上最大的公共蛋白质序列数据库。这是一个全面的、经过注释的、非冗余的蛋白质序列数据库,包含超过142,000条蛋白质序列(至99年9月),其中包括来自几十个完整基因组的蛋白质序列。所有序列数据都经过整理,超过99%的序列已按蛋白质家族分类,一半以上还按蛋白质超家族进行了分类。PSD的注释中还包括对许多序列、结构、基因组和文献数据库的交叉索引,以及数据库内部条目之间的索引,这些内部索引帮助用户在包括复合物、酶-底物相互作用、活化和调控级联和具有共同特征的条目之间方便的检索。每季度都发行一次完整的数据库,每周可以得到更新部分。 PSD数据库有几个辅助数据库,如基于超家族的非冗余库等。PIR提供三类序列搜索服务:基于文本的交互式检索;标准的序列相似性搜索,包括BLAST、FASTA等;结合序列相似性、注释信息和蛋白质家族信息的高级搜索,包括按注释分类的相似性搜索、结构域搜索GeneFIND等。 PIR和PSD的网址是:http://pir.georgetown.edu/。 数据库下载地址是:ftp://nbrfa.georgetown.edu/pir/。 2. SWISS-PROT SWISS-PROT是经过注释的蛋白质序列数据库,由欧洲生物信息学研究所(EBI)维护。数据库由蛋白质序列条目构成,每个条目包含蛋白质序列、引用文献信息、分类学信息、注释等,注释中包括蛋白质的功能、转录后修饰、特殊位点和区域、二级结构、四级结构、与其它序列的相似性、序列残缺与疾病的关系、序列变异体和冲突等信息。SWISS-PROT中尽可能减少了冗余序列,并与其它30多个数据建立了交叉引用,其中包括核酸序列库、蛋白质序列库和蛋白质结构库等。 利用序列提取系统(SRS)可以方便地检索SWISS-PROT和其它EBI的数据库。 SWISS-PROT只接受直接测序获得的蛋白质序列,序列提交可以在其Web页面上完成。 SWISS-PROT的网址是:http://www.ebi.ac.uk/swissprot/。 3. PROSITE PROSITE数据库收集了生物学有显著意义的蛋白质位点和序列模式,并能根据这些位点和模式快速和可靠地鉴别一个未知功能的蛋白质序列应该属于哪一个蛋白质家族。有的情况下,某个蛋白质与已知功能蛋白质的整体序列相似性很低,但由于功能的需要保留了与功能密切相关的序列模式,这样就可能通过PROSITE的搜索找到隐含的功能motif,因此是序列分析的有效工具。PROSITE中涉及的序列模式包括酶的催化位点、配体结合位点、与金属离子结合的残基、二硫键的半胱氨酸、与小分子或其它蛋白质结合的区域等;除了序列模式之外,PROSITE还包括由多序列比对构建的profile,能更敏感地发现序列与profile的相似性。PROSITE的主页上提供各种相关检索服务。 PROSITE的网址是:http://www.expasy.ch/prosite/。 4. PDB 蛋白质数据仓库(PDB)是国际上唯一的生物大分子结构数据档案库,由美国Brookhaven国家实验室建立。PDB收集的数据来源于X光晶体衍射和核磁共振(NMR)的数据,经过整理和确认后存档而成。目前PDB数据库的维护由结构生物信息学研究合作组织(RCSB)负责。RCSB的主服务器和世界各地的镜像服务器提供数据库的检索和下载服务,以及关于PDB数据文件格式和其它文档的说明,PDB数据还可以从发行的光盘获得。使用Rasmol等软件可以在计算机上按PDB文件显示生物大分子的三维结构。 RCSB的PDB数据库网址是:http://www.rcsb.org/pdb/。 5. SCOP 蛋白质结构分类(SCOP)数据库详细描述了已知的蛋白质结构之间的关系。分类基于若干层次:家族,描述相近的进化关系;超家族,描述远源的进化关系;折叠子(fold),描述空间几何结构的关系;折叠类,所有折叠子被归于全α、全β、α/β、α+β和多结构域等几个大类。SCOP还提供一个非冗余的ASTRAIL序列库,这个库通常被用来评估各种序列比对算法。此外,SCOP还提供一个PDB-ISL中介序列库,通过与这个库中序列的两两比对,可以找到与未知结构序列远缘的已知结构序列。 SCOP的网址是:http://scop.mrc-lmb.cam.ac.uk/scop/。 6. COG 蛋白质直系同源簇(COGs)数据库是对细菌、藻类和真核生物的21个完整基因组的编码蛋白,根据系统进化关系分类构建而成。COG库对于预测单个蛋白质的功能和整个新基因组中蛋白质的功能都很有用。利用COGNITOR程序,可以把某个蛋白质与所有COGs中的蛋白质进行比对,并把它归入适当的COG簇。COG库提供了对COG分类数据的检索和查询,基于Web的COGNITOR服务,系统进化模式的查询服务等。 COG库的网址是:http://www.ncbi.nlm.nih.gov/COG。 下载COG库和COGNITOR程序在:ftp://ncbi.nlm.nih.gov/pub/COG。 2.3 功能数据库 1. KEGG 京都基因和基因组百科全书(KEGG)是系统分析基因功能,联系基因组信息和功能信息的知识库。基因组信息存储在GENES数据库里,包括完整和部分测序的基因组序列;更高级的功能信息存储在PATHWAY数据库里,包括图解的细胞生化过程如代谢、膜转运、信号传递、细胞周期,还包括同系保守的子通路等信息;KEGG的另一个数据库是LIGAND,包含关于化学物质、酶分子、酶反应等信息。KEGG提供了Java的图形工具来访问基因组图谱,比较基因组图谱和操作表达图谱,以及其它序列比较、图形比较和通路计算的工具,可以免费获取。 KEGG的网址是:。 2. DIP 相互作用的蛋白质数据库(DIP)收集了由实验验证的蛋白质-蛋白质相互作用。数据库包括蛋白质的信息、相互作用的信息和检测相互作用的实验技术三个部分。用户可以根据蛋白质、生物物种、蛋白质超家族、关键词、实验技术或引用文献来查询DIP数据库。 DIP的网址是:http://dip.doe-mbi.ucla.edu/。 3. ASDB 可变剪接数据库(ASDB)包括蛋白质库和核酸库两部分。ASDB(蛋白质)部分来源于SWISS-PROT蛋白质序列库,通过选取有可变剪接注释的序列,搜索相关可变剪接的序列,经过序列比对、筛选和分类构建而成。ASDB(核酸)部分来自Genbank中提及和注释的可变剪接的完整基因构成。数据库提供了方便的搜索服务。 ASDB的网址是:http://cbcg.nersc.gov/asdb。 4. TRRD 转录调控区数据库(TRRD)是在不断积累的真核生物基因调控区结构-功能特性信息基础上构建的。每一个TRRD的条目里包含特定基因各种结构-功能特性:转录因子结合位点、启动子、增强子、静默子、以及基因表达调控模式等。TRRD包括五个相关的数据表:TRRDGENES(包含所有TRRD库基因的基本信息和调控单元信息);TRRDSITES(包括调控因子结合位点的具体信息);TRRDFACTORS(包括TRRD中与各个位点结合的调控因子的具体信息);TRRDEXP(包括对基因表达模式的具体描述);TRRDBIB(包括所有注释涉及的参考文献)。TRRD主页提供了对这几个数据表的检索服务。 TRRD的网址是:http://wwwmgs.bionet.nsc.ru/mgs/dbases/trrd4/。 5. TRANSFAC TRANSFAC数据库是关于转录因子、它们在基因组上的结合位点和与DNA结合的profiles的数据库。由SITE、GENE、FACTOR、CLASS、MATRIX、CELLS、METHOD和REFERENCE等数据表构成。此外,还有几个与TRANSFAC密切相关的扩展库:PATHODB库收集了可能导致病态的突变的转录因子和结合位点;S/MART DB收集了与染色体结构变化相关的蛋白因子和位点的信息;TRANSPATH库用于描述与转录因子调控相关的信号传递的网络;CYTOMER库表现了人类转录因子在各个器官、细胞类型、生理系统和发育时期的表达状况。TRANSFAC及其相关数据库可以免费下载,也可以通过Web进行检索和查询。 TRANSFAC的网址是:http://transfac.gbf.de/TRANSFAC/。 2.4 其它数据库资源 1. DBCat DBCat是生物信息数据库的目录数据库,它收集了500多个生物信息学数据库的信息,并根据它们的应用领域进行了分类。包括DNA、RNA、蛋白质、基因组、图谱、蛋白质结构、文献著作等基本类型。数据库可以免费下载或在网络上检索查询。 DBCat的网址是:http://www.infobiogen.fr/services/dbcat/。 下载DBCat在:ftp://ftp.infobiogen.fr/pub/db/dbcat。 2. PubMed PubMed是NCBI维护的文献引用数据库,提供对MEDLINE、Pre-MEDLINE等文献数据库的引用查询和对大量网络科学类电子期刊的链接。利用Entrez系统可以对PubMed进行方便的查询检索。 PubMed的网址是:http://www.ncbi.nlm.nih.gov/。 除了以上提及的数据之外,还有许许多多的专门生物信息数据库,涉及了目前生物学研究的各个层面和领域,由于篇幅所限无法一一详述。国内也有一些大数据库的镜像站点和自己开发的有特色的数据库,如欧洲分子生物学网络组织EMBNet中国节点北京大学分子生物信息镜像系统,上海博容基因公司与上海嘉瑞软件公司合作开发的国产汉化基因数据库及分析管理系统,同时国家级的生物信息学中心也在筹建之中。我们期待国内能有更多高质量和使用便利的数据库资源,推动我国生物信息学和整个生命科学的发展。 清华大学生物信息学研究所网址:http://bioinfo.tsinghua.edu.cn 北京大学生物信息镜像系统网址:http://cbi.pku.edu.cn |
4楼2005-06-07 16:46:06












回复此楼
凌波丽