24小时热门版块排行榜    

查看: 236  |  回复: 2
本帖产生 1 个 ,点击这里进行查看

aboyhw

新虫 (初入文坛)

[求助] EI收录情况

EI论文题目:Dual-kernel based 2D linear discriminant analysis for face,谢谢。

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

fatewu

主管区长 (文坛精英)

小木虫浪漫体验师~\(^o^)/~

优秀区长优秀区长优秀区长优秀版主优秀版主优秀版主优秀版主优秀版主优秀版主

【答案】应助回帖

★ ★ ★ ★ ★ ★ ★ ★ ★ ★
感谢参与,应助指数 +1
aboyhw: 金币+5, ★★★★★最佳答案 2015-08-22 16:32:56
aboyhw: 金币+5, ★★★★★最佳答案 2015-08-22 16:34:47
心静_依然: LS-EPI+1, 感谢应助 2015-08-22 16:51:49
已经EI收录  恭喜恭喜
Check record to add to Selected Records

Add to selected records
Dual-kernel based 2D linear discriminant analysis for face recognition


Liu, Xiao-Zhang1 Email author liuxiaozhang@gmail.com; Ye, Hong-Wei2  



Source: Journal of Ambient Intelligence and Humanized Computing, April 23, 2014;  ISSN: 18685137,  E-ISSN: 18685145;  DOI: 10.1007/s12652-014-0230-2; Publisher: Springer Verlag

Article in Press Information about Article in Press


Author affiliations:

1 School of Computer Science, Dongguan University of Technology, Dongguan, China

2 School of Electronics and Information Engineering, Heyuan Polytechnic, Heyuan, China

Abstract:

This paper proposes a new image feature extraction method for face recognition, called dual-kernel based two dimensional linear discriminant analysis (D-K2DLDA), by integrating multiple kernel discriminant analysis with the existing K2DFDA method. The proposed method deals with a face image directly as a matrix, instead of a stacked vector from rows or columns of the image. Moreover, we separately perform an iterative scheme for kernel parameter optimization for each of the two kernels, based on the maximum margin criterion and the damped Newton’s method, followed by a fusion procedure of the two kernels. Experimental results on the ORL and UMIST face databases show the effectiveness of D-K2DLDA. © 2014 Springer-Verlag Berlin Heidelberg

Main heading:  Face recognition

Controlled terms:  Discriminant analysis  -  Feature extraction  -  Iterative methods  -  Matrix algebra

Uncontrolled terms:  2D linear discriminant analysis  -  Image feature extractions  -  Iterative schemes  -  Kernel parameter optimization  -  Linear discriminant analysis  -  Matrix representation  -  Maximum margin criterions  -  Multiple kernels

Classification Code:  716 Telecommunication; Radar, Radio and Television -  921.1 Algebra -  921.6 Numerical Methods -  922 Statistical Methods

Database: Compendex



Full-text and Local Holdings Links
【化学化工区欢迎您,小晨欢迎您~\(^o^)/~】何以飘零去,何以少团栾,何以别离久,何以不得安~\(^o^)/~走自己的路,相信一切皆有可能!
2楼2015-08-22 16:09:11
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

fatewu

主管区长 (文坛精英)

小木虫浪漫体验师~\(^o^)/~

优秀区长优秀区长优秀区长优秀版主优秀版主优秀版主优秀版主优秀版主优秀版主

Accession number:  
20150700511111

Article in Press Information about Article in Press

              Title:  Dual-kernel based 2D linear discriminant analysis for face recognition
      Authors:  Liu, Xiao-Zhang1 Email author liuxiaozhang@gmail.com; Ye, Hong-Wei2  
    Author affiliation:  1 School of Computer Science, Dongguan University of Technology, Dongguan, China  
   2 School of Electronics and Information Engineering, Heyuan Polytechnic, Heyuan, China  
      Corresponding author:  Liu, Xiao-Zhang  
          Source title:  Journal of Ambient Intelligence and Humanized Computing
    Abbreviated source title:  J. Ambient Intell. Humanized Comput.
                Issue date:  April 23, 2014
    Publication year:  2014
              Language:  English
    ISSN:   18685137   
    E-ISSN:   18685145   
          Document type:  Article in Press
                Publisher:  Springer Verlag
       Abstract:  This paper proposes a new image feature extraction method for face recognition, called dual-kernel based two dimensional linear discriminant analysis (D-K2DLDA), by integrating multiple kernel discriminant analysis with the existing K2DFDA method. The proposed method deals with a face image directly as a matrix, instead of a stacked vector from rows or columns of the image. Moreover, we separately perform an iterative scheme for kernel parameter optimization for each of the two kernels, based on the maximum margin criterion and the damped Newton’s method, followed by a fusion procedure of the two kernels. Experimental results on the ORL and UMIST face databases show the effectiveness of D-K2DLDA. © 2014 Springer-Verlag Berlin Heidelberg
                         Page count:  6
    Main heading:  Face recognition  
      Controlled terms:  Discriminant analysis  -  Feature extraction  -  Iterative methods  -  Matrix algebra  
    Uncontrolled terms:  2D linear discriminant analysis  -  Image feature extractions  -  Iterative schemes  -  Kernel parameter optimization  -  Linear discriminant analysis  -  Matrix representation  -  Maximum margin criterions  -  Multiple kernels  
        Classification code:   716 Telecommunication; Radar, Radio and Television -  921.1 Algebra -  921.6 Numerical Methods -  922 Statistical Methods
                DOI:  10.1007/s12652-014-0230-2
              Database:  Compendex
   Compilation and indexing terms, © 2015 Elsevier Inc.
【化学化工区欢迎您,小晨欢迎您~\(^o^)/~】何以飘零去,何以少团栾,何以别离久,何以不得安~\(^o^)/~走自己的路,相信一切皆有可能!
3楼2015-08-22 16:09:47
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 aboyhw 的主题更新
信息提示
请填处理意见