24小时热门版块排行榜    

查看: 10169  |  回复: 283
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

chemyl8868

金虫 (正式写手)


[资源] 分享一本好书《Self-cleaning Materials and Surfaces-A Nanotechnology Approach》

铛铛铛铛,好书来喽
wiely上13年书《Self-cleaning Materials and Surfaces-A Nanotechnology Approach》
内容详细,包括自清洁材料及表面的定义、应用、各种材料及其制备方法,也包括该领域的最新研究进展。
目录如下:

PART I CONCEPTS OF SELF-CLEANING SURFACES
1 Superhydrophobicity and Self-Cleaning 3
Paul Roach and Neil Shirtcliffe
1.1 Superhydrophobicity 3
1.1.1 Introducing Superhydrophobicity 3
1.1.2 Contact Angles and Wetting 4
1.1.3 Contact Angle Hysteresis 4
1.1.4 The Effect of Roughness on Contact Angles 6
1.1.5 Where the Equations Come From 8
1.1.6 Which State Does a Drop Move Into? 11
1.2 Self-Cleaning on Superhydrophobic Surfaces 12
1.2.1 Mechanisms of Self-Cleaning on Superhydrophobic Surfaces 12
1.2.2 Other Factors 15
1.2.3 Nature’s Answers 17
1.2.4 Superhydrophilic Self-Cleaning Surfaces 19
1.2.5 Functional Properties of Superhydrophobic Surfaces 20
1.3 Materials and Fabrication 25
1.4 Future Perspectives 27
References 28
PART II APPLICATIONS OF SELF-CLEANING SURFACES
2 Recent Development on Self-Cleaning Cementitious Coatings 35
Daniele Enea
2.1 Introduction 35
2.2 Atmospheric Pollution: Substances and Laws 36
2.2.1 Nitrogen Oxides 36
2.2.2 Particulate Matter 37
2.2.3 Volatile Organic Compounds 37
2.3 Heterogeneous Photocatalysis 38
vi Contents
2.4 Self-Cleaning Surfaces 39
2.4.1 Mechanisms of Photo-Reduction of Air Pollutants 41
2.4.2 Some Experimental Evidences 41
2.5 Main Applications 44
2.6 Test Methods 46
2.6.1 Colour 46
2.6.2 Photocatalytic Degradation of Nitrogen Oxides 47
2.6.3 Photocatalytic Degradation of Micro-Pollutants in Air 49
2.6.4 Photocatalytic Degradation of Rhodamine B 51
2.6.5 Spectroscopic Techniques 53
2.7 Future Developments 53
References 54
3 Recent Progress on Self-Cleaning Glasses and Integration with
Other Functions 57
Baoshun Liu, Qingnan Zhao and Xiujian Zhao
3.1 Introduction 57
3.2 Theoretical Fundamentals for Self-Cleaning Glasses 58
3.2.1 Wettability 58
3.2.2 Photoinduced Hydrophilicity 59
3.2.3 Heterogeneous Photocatalysis 62
3.3 Self-Cleaning Glasses Based on Photocatalysis and Photoinduced
Hydrophilicity 63
3.3.1 Self-Cleaning Glasses with Pores 63
3.3.2 Doping to Realize Visible-Light-Induced Self-Cleaning
Glasses 65
3.3.3 The Use of Hole Transfer to Realize Self-Cleaning 67
3.3.4 The Effect of Temperature and Atmosphere on the
Photoinduced Hydrophilicity 67
3.3.5 The Effect of Soda Ions on the Properties of Self-Cleaning
Glasses 69
3.3.6 The Anti-Bacterial Effect and Anti-Fogging Effect 70
3.3.7 The Composite SiO2 Films for Self-Cleaning Glasses with
High Antireflection 72
3.4 Inorganic Hydrophobic Self-Cleaning Glasses 75
3.4.1 Modifying The TiO2 Film by Low-Electronegativity Elements 75
3.4.2 The Application of ZnO Material in a Superhydrophobic
Material 77
3.5 Self-Cleaning Glasses Modified by Organic Molecules 79
3.6 The Functionality of Self-Cleaning Glasses 80
References 84
4 Self-Cleaning Surface of Clay Roofing Tiles 89
Jonjaua Ranogajec and Miroslava Radeka
4.1 Clay Roofing Tiles and Their Deterioration Phenomena 89
4.1.1 Raw Material Composition and Firing Process 89
Contents vii
4.1.2 Surface Characteristics of Clay Roofing Tiles 91
4.1.3 Frost, Chemical and Biocorrosion Deterioration of Clay
Roofing Tiles 96
4.1.4 Simulation of Weathering of Clay Roofing Tiles in Laboratory
Conditions 97
4.2 Protective and Self-Cleaning Materials for Clay Roofing Tiles 105
4.2.1 Design of Protective and Self-Cleaning Coatings 107
4.2.2 Monitoring the Characteristics of Coated Clay Roofing Tiles 113
References 123
5 Self-Cleaning Fibers and Fabrics 129
Wing Sze Tung and Walid A. Daoud
5.1 Introduction 129
5.2 Photocatalysis 130
5.2.1 Mechanisms 131
5.2.2 Titanium Dioxide Photocatalyst 132
5.3 Photocatalytic Self-Cleaning Surface Functionalization of Fibrous
Materials 134
5.3.1 Self-Cleaning Cellulosic Fibers 134
5.3.2 Self-Cleaning Keratin Fibers 139
5.3.3 Self-Cleaning Synthetic Fibers 140
5.4 Application of Photocatalytic Self-Cleaning Fibers 142
5.4.1 Protective Clothing 142
5.4.2 Household Appliances and Interior Furnishing 143
5.5 Limitations 144
5.5.1 Environmental Concerns 144
5.5.2 Human Safety Concerns 144
5.5.3 Photocatalytic Efficiency and Stability 145
5.6 Future Prospects 146
5.6.1 Visible Light Activation 146
5.6.2 Remote Photocatalytic Effect 146
5.6.3 Process Modification 146
5.6.4 Empirical Measurements 147
5.7 Conclusions 147
References 147
6 Self-Cleaning Materials for Plastic and Plastic-Containing Substrates 153
Houman Yaghoubi
6.1 Introduction 153
6.2 TiO2 Thin Films on Polymers: Sol–Gel-Based
Wet Coating Techniques 155
6.2.1 Wet Coating Techniques: History and Advantages 155
6.2.2 TiO2 Photocatalytic Thin Films on PC and PMMA 156
6.2.3 SiO2 Incorporation into TiO2 - SiO2 as an Interfacial
Layer for TiO2 162
6.2.4 TiO2 Photocatalytic Thin Films on PET and HDPE 167
viii Contents
6.2.5 TiO2 Photocatalytic Thin Films on PS 171
6.2.6 Modified Hybrid TiO2 Sols on Plastics: ABS, Polystyrene,
and PVC 172
6.2.7 TiO2 on Paints and Self-Cleaning Paints 175
6.2.8 MW Irradiation–Assisted Dip Coating for Low-Temperature
TiO2 Deposition on Polymers 178
6.2.9 Nanomechanical Properties of Dipped TiO2 Granular Thin
Films on Polymer Substrates 179
6.3 TiO2–Polymer Nanocomposites Review:
Casting (Mixing) Techniques 181
6.3.1 Short History and Advantages 181
6.3.2 Ag/Polyethylene Glycol (PEG)–Polyurethane (PU)–TiO2
Nanocomposite Films by Solution Casting Techniques 182
6.3.3 Antimicrobial Activity of TiO2-Isotactic Polypropylene (iPP)
Composites 183
6.3.4 TiO2 Immobilized Biodegradable Polymers 184
6.4 TiO2 Sputter-Coated Films on Polymer Substrates 187
6.4.1 DC Reactive Magnetron Sputtering of Photocatalytic TiO2
Films on PC 187
6.4.2 Reactive Radio-Frequency [RF] Magnetron Sputtering of
Photocatalytic TiO2 Films on PET 189
6.5 TiO2 Thin Films on PET and PMMA by Nanoparticle Deposition
Systems (NPDS) 190
6.6 Photo-Responsive Discharging Effect of Static Electricity on
TiO2-Coated Plastic Films 192
6.7 Recent Achievements 192
6.7.1 Commercialized Products: Ube-Nitto Kasei Co. and the
University of Tokyo 192
6.7.2 Patents: University of Wisconsin 193
Acknowledgements 194
References 194
PART III ADVANCES IN SELF-CLEANING SURFACES
7 Self-Cleaning Textiles Modified by TiO2 and Bactericide Textiles
Modified by Ag and Cu 205
John Kiwi and Cesar Pulgarin
7.1 Introduction 205
7.2 Self-Cleaning Textiles: RF-Plasma Pretreatment to Increase the
Binding of TiO2 206
7.3 Self-Cleaning Mechanism for Colorless and Colored Stains
on Textiles 208
7.4 Self-Cleaning Textiles: Vacuum-UVC Pretreatment to Increase the
Binding of TiO2 209
Contents ix
7.5 XPS to Follow Stain Discoloration on Cotton Modified with TiO2 and
Characterization of the TiO2 Coating 212
7.6 Bactericide/Ag/Textiles Prepared by Pretreatment with Vacuum-UVC 214
7.7 DC-Magnetron Sputtering of Textiles with Ag Inactivating Airborne
Bacteria 217
7.8 Inactivation of E. coli by CuO in Suspension in the Dark and Under
Visible Light 218
7.9 Inactivation of E. coli by Pretreated Cotton Textiles Modified with
Cu/CuO at the Solid/Air Interface 220
7.10 Direct Current Magnetron Sputtering (DC and DCP) of
Nanoparticulate Continuous Cu-Coatings on Cotton Textile Inducing
Bacterial Inactivation in the Dark and Under Light Irradiation 220
7.11 Future Trends 223
References 224
8 Liquid Flame Spray as a Means to Achieve Nanoscale Coatings with
Easy-to-Clean Properties 229
Mikko Aromaa, Joe A. Pimenoff and Jyrki M. M¨akel¨a
8.1 Gas-Phase Synthesis of Nanoparticles 229
8.2 Aerosol Reactors 233
8.2.1 Hot Wall Reactors 233
8.2.2 Laser Reactors 234
8.2.3 Plasma Reactors 234
8.2.4 Flame Reactors 235
8.2.5 Spray Pyrolysis 236
8.3 Liquid Flame Spray 237
8.3.1 Synthesis of Nanoparticles via LFS 237
8.3.2 Multicomponent Nanoparticles 238
8.3.3 Synthesis and Deposition of Nanoparticle Coatings 240
8.4 Liquid Flame Spray in Synthesis of Easy-to-Clean
Antimicrobial Coatings 243
8.4.1 Synthesis of Titanium Dioxide 243
8.4.2 Deposition of the Titania Coatings 244
8.4.3 Doping of the Coatings 246
8.4.4 Performance of the Antimicrobial Easy-to-Clean Coatings 247
8.5 Summary 249
References 249
9 Pulsed Laser Deposition of Surfaces with Tunable Wettability 253
Evie L. Papadopoulou
9.1 Introduction 253
9.2 Basic Theory of Wetting Properties of Surfaces 254
9.2.1 Planar Surfaces 254
9.2.2 Rough Surfaces 255
x Contents
9.3 Roughening a Flat Surface 256
9.3.1 PLD Technique Overview 257
9.3.2 Nanostructures Grown by PLD 257
9.4 Switchable Wettability 263
9.4.1 Photoinduced Wettability on PLD Structures 263
9.4.2 Electrowetting on PLD Structures 267
9.5 Concluding Remarks 270
References 271
10 Fabrication of Antireflective Self-Cleaning Surfaces Using
Layer-by-Layer Assembly Techniques 277
Yu-Min Yang
10.1 Introduction 277
10.2 Antireflective Coatings 278
10.2.1 Interference Multiple Layers 278
10.2.2 Inhomogeneous Layer with Gradient Refractive Index 279
10.3 Solution-Based Layer-by-Layer (LbL) Assembly Techniques 280
10.3.1 Electrostatic Assembly 280
10.3.2 Langmuir–Blodgett (LB) Assembly 281
10.3.3 Self-Assembly 282
10.4 Mechanisms of Self-Cleaning 283
10.4.1 Hydrophilic Surfaces 283
10.4.2 Hydrophobic Surfaces 284
10.5 Fabrication of Antireflective Self-Cleaning Surfaces
Using Electrostatic Layer-by-Layer (ELbL) Assembly
of Nanoparticles 285
10.5.1 Superhydrophilic Self-Cleaning Surfaces with
Antireflective Properties 285
10.5.2 Superhydrophobic Self-Cleaning Surfaces with
Antireflective Properties 291
10.6 Fabrication of Superhydrophobic Self-Cleaning Surfaces
Using LB Assembly of Micro-/Nanoparticles 297
10.7 Characterization of As-Fabricated Surfaces 300
10.7.1 Surface Morphology and Roughness 300
10.7.2 Thickness, Porosity, and Refractive Index 301
10.7.3 Transmittance 302
10.7.4 Photocatalytic Properties 303
10.7.5 Contact Angle and Contact Angle Hysteresis 304
10.7.6 Mechanical Stability 305
10.8 Challenges and Future Development 306
10.9 Conclusion 307
References 307
Contents xi
PART IV POTENTIAL HAZARDS AND LIMITATIONS
OF SELF-CLEANING SURFACES
11 The Environmental Impact of a Nanoparticle-Based Reduced Need
of Cleaning Product and the Limitation Thereof 315
L. Reijnders
11.1 Introduction 315
11.1.1 Outline 315
11.1.2 Nanoparticle-Based Reduced Need of Cleaning Surfaces 316
11.2 Titania and Amorphous Silica Nanoparticles and Carbon Nanotubes
Can Be Hazardous and May Pose a Risk 319
11.2.1 Molecular Mechanisms 322
11.2.2 Risk Caused by Nanoparticles 322
11.3 Environmental Impact of a Reduced Need of Cleaning Product 323
11.3.1 Direct Environmental Effects of a Nanoparticle-Based
Reduced Need of Cleaning Product 324
11.3.2 Net Direct Environmental Benefits 328
11.3.3 Indirect Environmental Effects of a Nanoparticle-Based
Reduced Need of Cleaning Product 329
11.4 Limiting the Direct Environmental Impact of a Nanoparticle-Based
Reduced Need of Cleaning Product, Including Limitation of Risks
Following from Exposure to Nanoparticles 330
11.4.1 Limiting the Direct Environmental Impact 330
11.4.2 Limitation of Risks Following from Exposure to Nanoparticles 330
11.5 Conclusion 331
References 331
Index 347


http://pan.baidu.com/s/1kTlAcMb下载地址分享一本好书《Self-cleaning Materials and Surfaces-A Nanotechnology Approach》
1119991773.jpg
回复此楼

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com
  • 附件 1 : self-cleaning_materials_and_surfaces-A_Nanotechnology_Approach.pdf
  • 2015-04-30 14:51:31, 7.14 M

» 猜你喜欢

» 本主题相关商家推荐: (我也要在这里推广)

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

ranfoot

新虫 (初入文坛)


★★★★★ 五星级,优秀推荐

一本很系统的文献,感谢上传者
227楼2016-09-30 15:57:43
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 284 个回答
简单回复
ylei5312楼
2015-04-30 19:10   回复  
五星好评  顶一下,感谢分享!
wjy20113楼
2015-04-30 22:42   回复  
五星好评  顶一下,感谢分享!
2015-05-01 00:07   回复  
五星好评  顶一下,感谢分享!
2015-05-01 06:50   回复  
五星好评  顶一下,感谢分享!
zxdhxx6楼
2015-05-01 08:30   回复  
五星好评  顶一下,感谢分享!
2015-05-01 08:52   回复  
五星好评  顶一下,感谢分享!
2015-05-01 09:08   回复  
五星好评  顶一下,感谢分享!
gzmeng9楼
2015-05-01 10:15   回复  
五星好评  顶一下,感谢分享!
jedi-j11楼
2015-05-01 10:45   回复  
五星好评  顶一下,感谢分享!
lwg312楼
2015-05-01 10:46   回复  
五星好评  顶一下,感谢分享!
zju10013楼
2015-05-01 10:51   回复  
五星好评  顶一下,感谢分享!
cqu355514楼
2015-05-01 12:08   回复  
五星好评  顶一下,感谢分享!
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
最具人气热帖推荐 [查看全部] 作者 回/看 最后发表
[论文投稿] Required Reviews Completed +9 驴哈哈 2024-12-20 10/500 2024-12-22 20:58 by 凌晨一点393
[考博] 定向就业,毕业证学位证由工作单位领取? +3 河西夜郎 2024-12-22 4/200 2024-12-22 20:30 by changlu999
[功能材料] 请教大神,带隙是DFT计算出来的还是实验测出来的? 10+3 大力2010 2024-12-21 6/300 2024-12-22 18:08 by Ayase_lumi
[论文投稿] 挑数据是造假吗 +8 电话的建设 2024-12-21 8/400 2024-12-22 18:01 by beefly
[教师之家] 为啥很多高校老师不愿意当副院长? +10 意得辑_editage 2024-12-18 13/650 2024-12-22 17:30 by fqcgfqcgfqcg
[硕博家园] 脂质氧化 +3 song794 2024-12-22 4/200 2024-12-22 14:12 by song794
[教师之家] 咨询一下,是不是教授之间比较忌讳谈论文造假,因为可能很多人都是造假 +7 akslis2024 2024-12-21 8/400 2024-12-22 12:30 by Quakerbird
[考博] 想找一位年轻的985博导 +6 艾弗森迪尔 2024-12-21 7/350 2024-12-22 09:33 by 飞翔和星辰
[论文投稿] sci二区的审稿周期 22+5 分外含晴 2024-12-16 12/600 2024-12-21 23:02 by 分外含晴
[考博] 华南理工大学 “新能源交叉创新团队--主动安全”课题组招收海外联合培养博士生 +4 hubble 2024-12-20 5/250 2024-12-21 16:16 by 那片叶落
[教师之家] 40多岁的教师危机感很强啊 (金币+5) +21 farmer1999 2024-12-16 28/1400 2024-12-21 16:07 by willbuilder
[教师之家] 学校排名靠前发展好,最大的受益者是校领导还是普通老师? +6 akslis2024 2024-12-17 7/350 2024-12-21 11:22 by 凌晨一点393
[论文投稿] 投稿投错期刊,怎么撤稿? 200+4 birrd 2024-12-17 8/400 2024-12-20 14:53 by yiran909
[有机交流] 请问液溴开封后没有密封,放一年会变质吗? +9 rommel1975 2024-12-16 9/450 2024-12-20 11:01 by 2005127239
[教师之家] 某老师在组会上总是针对我带的学生怎么办? +15 lice_1987 2024-12-17 23/1150 2024-12-20 04:50 by 胖胖的大海
[论文投稿] 求推荐5分二区以上肿瘤接受生信结合实验的期刊。。。 +3 lice_1987 2024-12-17 6/300 2024-12-19 17:01 by Andy_124
[考博] 民办高校招聘 +3 大发财树 2024-12-18 3/150 2024-12-18 18:40 by xzxu2012
[有机交流] 核磁氢谱分析 +3 然虫 2024-12-16 4/200 2024-12-18 15:52 by 小肉干
[有机交流] 求这个反应的反应条件 +6 戒骄戒躁+ 2024-12-17 6/300 2024-12-18 11:43 by diaodeng
[基金申请] 网传董晨院士涉嫌24篇论文造假,本人回应:非恶意造假 +6 babu2015 2024-12-17 6/300 2024-12-18 08:46 by llhljsy
信息提示
请填处理意见