24小时热门版块排行榜    

CyRhmU.jpeg
查看: 3603  |  回复: 94
【奖励】 本帖被评价85次,作者pkusiyuan增加金币 66.4

pkusiyuan

银虫 (正式写手)


[资源] Concepts in Surface Physics 2Ed

标准分享网 www.bzfxw.com
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Thermodynamical and Statistical Properties of Clean Surfaces.
2.1 Thermodynamics of a Surface at Equilibrium.
2.2 Equilibrium Shape of a Crystal
2.3 Facetting ........... .
2.4 The Roughening Transition. . .
2.4.1 Generalities........
2.4.2 Macroscopic Approach: The Continuum Limit.
a) One Dimensional Case: Statistics of a Step .
b) The Two Dimensional Case: Statistics of a Surface
2.4.3 Microscopic Approach ........ .
a) Equilibrium Shape of a Step Edge
b) Equilibrium Shape of a Surface:
The Roughening Transition . . . .
2.4.4 Consequences of the Roughening Transition for
the Equilibrium Shape of Crystals and for
Crystal Growth. . . . . . . . . . . . . . . . ...
2.4.5 Experimental Evidences of the Roughening
Transition. . . . . . . . . . . . . . . . . . . .
2.4.6 Special Cases of Vicinal Surfaces . . . . . .
Problems
3. Atomic Structure of Surfaces . . . . . . .
3.1 Surface Crystallography. . . . . ..
3.1.1 Two-Dimensional Lattices.
3.1.2 Semi-Infinite Crystals. Relaxation. Reconstruction .. .
3.1.3 Notations for Surface Structures . . .. . ...... .
3.1.4 Vicinal Surfaces .............. .
3.1.5 Reciprocal Lattice and Brillouin Zones.
3.2 Experimental Techniques. . . . . ....
3.2.1 Observation of the Real Lattice. . . . .
a) Field-ion Microscopy (FIM). . . . .
b) Scanning Tunneling Microscopy (STM) ..
3.2.2 Observation of the Reciprocal Lattice . . . . .
a) Principles of Diffraction. . . . . . . . . . . . . ... .
b) Low Energy Electron Diffraction (LEED) ..... .
4
4
7
13
15
15
16
16
25
29
29
34
41
41
43
43
48
48
48
49
51
53
53
57
57
57
60
63
63
71
X Contents
3.2.3
Problems
c) Atom Scattering ............. .
d) X-ray Scattering at Grazing Incidence .
Indirect Methods. . . . . . . . . . . . . . . .
a) Photoelectron Diffraction (PhD) .....
b) Surface Extended X-ray Absorption Fine
Structure (SEXAFS) .
c) Other Methods.
4. Vibrations at Surfaces
4.1 Elastic Forces in Crystals.
4.1.1 Dynamical Matrix.
4.1.2 Interatomic Forces.
a) Central Forces.
b) Angular Forces.
4.2 Bulk Modes. . . . . . . . . .
4.3 Surface Modes ....... .
4.3.1 Semi-Infinite Linear Chain ..
a) Mo =I- M ...... .
b) Po =I- P . . . . . . . .
4.3.2 Semi-Infinite Crystals.
a) The Slab Method .
b) Exact Method for the Calculation of Surface Modes
c) Relaxation and Reconstruction of Surfaces
from Phonon Calculations . . . . . . . . . . . ..
d) Experimental Determination of Surface Modes.
4.3.3 Brief Remarks on Adsorbed Layers.
4.4 Spectral Densities of Modes ....... .
4.5 Vibrational Thermodynamical Functions.
4.5.1 Surface Vibrational Entropy. . . .
4.5.2 Surface Internal Energy. . . . . . .
4.5.3 Surface Specific Heat at Constant Volume.
4.6 Mean Square Displacements ...
4.6.1 Theory.............
4.6.2 Experimental Techniques ..
a) Diffraction Experiments.
b) PhD and SEXAFS Experiments.
c) Conclusion . . . . . . . . . . . . .
Problems
5. Electronic Structure of Surfaces. . ....... .
5.1 lellium Model. . . . . . . . . ....... .
5.1.1 The Free Electron Gas Bounded by Infinite Barriers
a) One-dimensional Electron Gas .
b) Three-dimensional Electron Gas ......... .
74
78
86
86
93
99
101
106
106
106
108
108
111
112
114
115
115
117
118
119
120
124
128
131
133
137
138
139
139
140
140
143
143
147
152
153
162
163
164
164
167
Contents XI
5.1.2 The Free Electron Gas Bounded by Finite Barriers . . 170
5.1.3 The Jellium Model in the Local Density
Functional Formalism. . . . . . . . . . . . . . . . . . . . 177
a) Homogeneous Jellium. . . . . . . . . . . . . . . . . . 178
b) General Case. . . . . . . . . . . . . . . . . . . . . 180
5.2 Nearly Free Electron Model-Surface States . . . . . . . . . 188
5.2.1 Nearly Free Electron Model for Bulk States . . . . 188
5.2.2 Surface States in Simple Gaps (Gaps of Type A) . . 197
5.2.3 Surface States in Gaps of Type B. . . . . . . . . . . . . 204
5.2.4 An Example: AI(OOI). . . . . . . . . . . . . . . . . . . . . 210
a) Band Structure along the r X Direction. . . . . . . 210
b) Band Structure along the r 1\1 Direction . . . . . . 211
5.2.5 Semiconductors . . . . . . . . . . 215
5.3 Tight-Binding Approximation. . . . . . . . . . . . . . . . . . . 217
5.3.1 General Principles. . . . . . . . . . . . . . . . . . . . 218
5.3.2 Computation Techniques for Semi-Infinite Crystals . . 219
a) The Slab Method . . . . . . . . . " ........ 220
b) The Continued Fraction Technique. . . . . . 220
c) Illustrative Examples . . . . . . . . . . . . . . 224
5.4 Application of the Tight-Binding Approximation to
Transition Metal Surfaces. . . . . . . . . . . . . . . . . . 235
5.4.1 Brief Survey of Bulk Electronic Structure . . . . . . . . 235
a) Band Structure. . . . . . . . . . . . . . . . . . . . . . 235
b) Cohesive Energy. . . . . . . . . . . . . . . . . . . .. 238
5.4.2 Surface Densities of States and Potential. . . . 242
5.4.3 Surface Energies . . . . . . . . . . . . . . . . . . . . . . . 247
5.4.4 Relaxation and Reconstruction from Energy
Calculations. . . . . . . . . . . . . . . . . . . . . . . . .. 251
5.5 Application of the Tight-Binding Approximation to
Semiconductor Surfaces. . . . . . . . • . . . . . . . . . . . . . . 254
5.5.1 Brief Survey of Bulk Electronic Structure . . . . . . .. 254
a) Band Structure. . . . . . . . . . . . . . . . . 254
b) Cohesive Energy. . . . . . . . . . . . . . . . . . . .. 265
5.5.2 Determination of the Surface Tight-Binding
Parameters . . . . . . . . . . . . . . . . . . . . . . . . " 267
5.5.3 Qualitative Discussion of Surface States
in Semiconductors. . . . . . . . . 268
5.5.4 Examples.............. 271
a) The (111) Surface of Si . . . . . . . . . . . . . 271
b) The (001) Surface of Si . . . . . . . . . . . . . 275
c) Brief Remarks on Heteropolar Semiconductor
Surfaces . . . . . . . . . . . . .. ........... 283
5.6 Other Methods. . . . . . . . . . . . . . .. ........... 284
5.6.1 The Propagation Matrix Method. ........... 284
a) Formulation of the Method .. ........... 284
XII Contents
b) The Layer KKR Method. . . . . . . . . . . 294
c) The Method of Appelbaum and Hamann . 303
5.6.2 Methods Using the Slab Geometry. 308
a) The Single Slab Geometry . . 309
b) The Periodic Slab Geometry. . . 310
5.7 Surface Plasmons in Metals . . . . . . . . . 310
5.7.1 Summary of Bulk Plasmons in a lellium. 311
a) Elementary Classical Theory: the Plasma Frequency 311
b) Relation with the Dielectric Function:
Dispersion of Plasmons. . . . . . . . . . . 312
5.7.2 Surface Plasmons in a lellium. . . . . . . . . 320
a) The Simple Case of Charge Oscillations
Strictly Localized in the Surface Plane. . 320
b) The Surface Plasmon Dispersion . . . . . 323
5.7.3 Brief Remarks on the Effects of the Crystal
Potential. . . . . . . . 335
a) Bulk Plasmons. . 335
b) Surface Plasmons 338
5.8 Image Potential. . . . . . . . 338
5.8.1 Response of a Semi-Infinite lellium to a Uniform
External Electric Field . . . . . . . . . . . . . . . 339
5.8.2 Interaction of an External Point Charge with a
Semi-Infinite lellium: the Image Potential.
5.8.3 Image Potential in a Dielectric Medium.
5.8.4 Image Surface States . . . . . . . . . . . ..
a) Basics of Image Surface States. . . . ..
b) A New Formulation of the Criterion for
the Existence of Surface States ...... .
c) Determination of the Electron Reflectivity of
342
346
348
348
349
the Surface Barrier. . . . . . . . . . . . . . . . . 351
d) Determination of the Reflectivity of the Crystal
in the Nearly Free Electron Approximation. . . 352
e) "An Example: Surface States in the L Gap of Cu(111) 353
f) Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 355
5.9 Some Further Remarks on Exchange and Correlation Energies 355
5.9.1 Exchange and Correlations in a Semi-Infinite lellium:
Validity of the Local Density Functional Approximation 356
5.9.2 Correlations in the Tight-Binding Formalism:
The Hubbard Hamiltonian. . . . . . . . . . . . . . . . . 361
a) Electronic Correlations in a s Band. . . . . . . . . . 362
b) Electronic Correlations in Degenerate Bands. . . 367
c) Influence on the Band Structure and Conclusions 369
5.10 Experimental Techniques for Investigating the
Electronic Structure . . . . . . . . . . . . . 370
5.10.1 Surface Core Level Spectroscopy. . . . 371
Contents
a) Microscopic Approach . . . . . . . . . . ..
b) Thermodynamical Model. ......... .
c) An Example: Surface Core Level Binding
Energy Shifts in Ta and W. . . . . . . . . . . .
5.10.2 Photoemission of Valence Electronic States ....
a) Principle of the Determination of Dispersion
Curves from Photoemission Spectra . . . . . .
b) An Example of Bulk Dispersion Curves: Cu(llO).
c) An Example of a Surface State Dispersion Curve:
AI(lOO) ....................... .
d) Brief Outline of the Principles of the Intensity
Calculations in Photoemission ...... .
5.10.3 Inverse Photoemission ............ .
5.10.4 Spatially-Resolved Tunneling Spectroscopy.
5.10.5 Measurement of Surface Plasmons ..... .
5.10.6 Measurement of the Work Function .... .
a) Vibrating Capacitor Method or Kelvin Method
b) Field Emission ......... .
c) Thermionic Emission Method .
d) Secondary Electron Method. .
5.10.7 Measurement of Surface Energies.
Problems
a) Measurements Based on the Study of the
Equilibrium Shape of Crystals ..
b) Thermal Creep Under Tension .
c) Surface Energy of Liquid Metals
6. Adsorption Phenomena.
6.1 Thermodynamical Approach.
6.2 Statistical Methods. . . . . . .
6.2.1 Adsorption Isotherms in the Absence of Lateral
Interactions Between Adatoms. . . . . . . . . ..
a) Monolayer Adsorption: Langmuir Isotherms .
b) Multilayer Adsorption: Brunauer, Emmett and
Teller (BET) Isotherms .............. .
6.2.2 The Two-Dimensional Lattice Gas ......... .
a) Study of Isotherms: Condensation Phase Transition.
b) Order-disorder Transition in Adsorbed Layers.
6.3 Physisorption..........................
6.3.1 The Classical Electrostatic Interaction Between a
Polar Particle and a Dielectric Surface. . . . . . .
a) Interaction between Two Dipoles. . . . . . . .
b) Interaction between a Dipole and a Dielectric Surface
6.3.2 Interaction Between a Neutral Atom and a
Dielectric Surface ..................... .
XIII
372
373
375
377
378
381
384
385
387
389
392
393
393
394
394
394
395
395
395
396
397
411
412
416
417
417
420
423
423
432
438
438
438
439
440
XIV Contents
a) Van der Waals Interaction between Two
Neutral Atoms in S-States ........ . 440
b) Van der Waals Interaction between a Neutral
Atom and a Dielectric Surface. . . . . . . . . . . . . 443
6.4 Chemisorption.......................... 452
6.4.1 Generalities on Charge Transfer in Chemisorption. 455
a) Variation of the Ionization Energy. . 456
b) Variation of the Affinity Energy. . . . 457
6.4.2 Anderson-Grimley-Newns Hamiltonian. 458
a) Hartree-Fock Treatment. . . . . . . . 458
b) Beyond the Hartree-Fock Treatment 467
6.4.3 Chemisorption in the Local Density Functional
Formalism . . . . . . . . . . . . . . . . . . . . . . 469
a) Atomic Chemisorption on a lellium Surface. 469
b) The Effective Medium Theory. . . . . . . 475
6.4.4 Chemisorption on Transition Metals in the
Tight-Binding Approximation. . . . . . . . 491
a) General Characteristics of the Models. 491
b) Analytical Models. . . . . . . . . . . . . 493
c) Improved Models . . . . . . . . . . . . . 498
d) An Example: Adsorption of Simple Elements
on BCC Transition Metal Surfaces. . . . 500
6.4.5 Vibrations of an Adsorbate. . . . . . . . . . . 505
a) Rigid Substrate Approximation: Ma ~ M 505
b) General Case . 512
c) Experiments. . . . . . . 512
6.4.6 Conclusions......... 514
6.5 Interactions Between Adsorbates 515
6.5.1 Experimental Data. . . . . 515
6.5.2 Theory of Adatom-Adatom Interactions. 517
a) Electronic Interactions 517
b) Dipolar Interactions. . . . . . . . . . . 523
c) Elastic Interactions. . . . . . . . . . . . 524
6.5.3 Consequences of Adatom-Adatom Interactions
and Conclusions . . . . . . . . . . . . . 525
6.6 Electronic Structure of Ordered Overlayers.
An Example: 0 on Ni(I00) . 525
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 528
Appendices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
A. Theory of Scattering by a Spherical Potential: Brief Summary . 539
A.1 Solution of the Schrodinger Equation for a Particle
in a Spherical Potential . . . . . . . . . . . . . . . . . . 539
A.2 Scattering of a Free Particle by a Spherical Potential. 541
A.3 Friedel's Sum Rule . . . . . . . . . . . . . . . . . . . . . 543
Contents XV
B. The Continued Fraction Technique. . . 545
B.l Principle of the Recursion Method. 545
B.2 Principle of the Moment Method. . 547
B.3 Practical Calculations. . . . . . . . . 549
C. Electromagnetic Waves in Matter. . . . 552
C.l Brief Summary of Maxwell Equations in Vacuum. 552
C.2 Maxwell Equations and Dielectric Properties in a
Homogeneous and Isotropic Medium. . . . . . . . 553
C.3 An Equivalent Description of the Dielectric Properties
of a Homogeneous and Isotropic Medium: Longitudinal
and Transverse Dielectric Functions. . . . . . . . . . . 554
D. Calculation of the Variation of the Total Energy Due
to a Perturbing External Charge Distribution Within the
Density Functional Formalism. . . . . . . . . . . . . . . . . 556
E. Useful Relations for the Study of Many Body Interactions 558
E.l Relation Between the Expectation Value of the Interaction
Energy and the Total Energy for a System of Interacting
ParticL:.> ....................... 558
E.2 Derivation of the Fredholm Formula . . . . . . . . . . . . . 558
F. Interaction of an Electron With an Electromagnetic
Field and Theory of Angle-Resolved Ultra-Violet
Photoemission (UPS) . . . . . . . . . . . . . . . . . . . 559
F.l The Optical Matrix Element. . . . . . . . . . . . . 560
F.2 Expression of the Photoemitted Current in UPS. 562
F.2.l Some Useful Relations . . . . . . . . . . . . 562
F.2.2 Calculation of the Photoemitted Current in UPS. 564
F.3 Conservation of the Wave Vector in Photoemission. . . 567
G. Calculation of the Current in a Scanning Tunneling Microscope 571
H. Calculation of the Atomic Dynamic Polarizability . . . . . . .. 578
I. Variation of the Density of States Due to a Perturbing Potential 579
J. Energy of Chemisorption in the Anderson-Grimley-Newns
Model Using Contour Integrals. . . . . . . . . . . . . . 580
K. Elastic Constants and Elastic Waves in Cubic Crystals 581
K.l Elastic Strain . . . 581
K.2 Elastic Stress . . . . . . . . . . . . . . . . . . . . . 582
K.3 Elastic Constants. . . . . . . . . . . . . . . . . . . 583
K.4 Propagation of Elastic Waves in Cubic Crystals 583
K.5 Elastic Energy . . . . . . . . . . . . . . . . . . . . 584
References. . . 585
Subject Index . 599
回复此楼

» 本帖附件资源列表

» 收录本帖的淘帖专辑推荐

uicorn3 物理化学 李的收藏 沉淀法制备多相催化剂

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

hustoe2011

至尊木虫 (文坛精英)


★★★★★ 五星级,优秀推荐

mark
28楼2015-03-24 17:52:03
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

lfk03006

木虫 (职业作家)


★★★★★ 五星级,优秀推荐

很好,顶一下,感谢分享!
29楼2015-03-24 22:25:34
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
mechtest2楼
2015-03-22 11:31   回复  
五星好评  顶一下,感谢分享!
lwg33楼
2015-03-22 16:33   回复  
五星好评  顶一下,感谢分享!
2015-03-22 22:43   回复  
五星好评  顶一下,感谢分享!
2015-03-23 03:01   回复  
五星好评  顶一下,感谢分享!
yapiliu6楼
2015-03-23 08:10   回复  
三星好评  顶一下,感谢分享!
2015-03-23 08:19   回复  
五星好评  顶一下,感谢分享!
wjy20118楼
2015-03-23 08:47   回复  
五星好评  顶一下,感谢分享!
ranping9楼
2015-03-23 09:32   回复  
五星好评  顶一下,感谢分享!
c2002z10楼
2015-03-23 10:37   回复  
五星好评  顶一下,感谢分享!
wtiger11楼
2015-03-23 11:16   回复  
五星好评  顶一下,感谢分享!
zhangttqq12楼
2015-03-23 11:28   回复  
五星好评  顶一下,感谢分享!
zhangttqq13楼
2015-03-23 14:00   回复  
顶一下,感谢分享!
wangth092114楼
2015-03-23 16:48   回复  
五星好评  顶一下,感谢分享!
zjys588715楼
2015-03-23 21:39   回复  
五星好评  顶一下,感谢分享!
lxw20216楼
2015-03-23 22:27   回复  
五星好评  顶一下,感谢分享!
homebird17楼
2015-03-23 22:37   回复  
五星好评  顶一下,感谢分享!
2015-03-24 00:11   回复  
五星好评  顶一下,感谢分享!
zym100319楼
2015-03-24 00:20   回复  
五星好评  顶一下,感谢分享!
luxia021020楼
2015-03-24 05:57   回复  
五星好评  顶一下,感谢分享!
parkzhu21楼
2015-03-24 06:52   回复  
五星好评  顶一下,感谢分享!
spxjyemrl22楼
2015-03-24 08:58   回复  
五星好评  顶一下,感谢分享!
Actor200623楼
2015-03-24 12:41   回复  
五星好评  顶一下,感谢分享!
kong16724楼
2015-03-24 13:43   回复  
五星好评  顶一下,感谢分享!
bkdcs25楼
2015-03-24 14:07   回复  
五星好评  顶一下,感谢分享!
gate_open26楼
2015-03-24 15:33   回复  
五星好评  顶一下,感谢分享!
wangwenju27楼
2015-03-24 16:21   回复  
五星好评  顶一下,感谢分享!
muxinjin30楼
2015-03-24 22:47   回复  
五星好评  顶一下,感谢分享!
quantum99931楼
2015-03-25 08:27   回复  
五星好评  顶一下,感谢分享!
2015-03-25 09:59   回复  
五星好评  顶一下,感谢分享!
njrlfu33楼
2015-03-25 11:32   回复  
五星好评  顶一下,感谢分享!
xianlaoshi34楼
2015-03-25 12:22   回复  
五星好评  顶一下,感谢分享!
wwddhh35楼
2015-03-26 07:51   回复  
五星好评  顶一下,感谢分享!
ykyang36楼
2015-03-26 08:34   回复  
五星好评  顶一下,感谢分享!
dts11737楼
2015-03-26 09:59   回复  
五星好评  顶一下,感谢分享!
sheath38楼
2015-03-26 11:30   回复  
三星好评  
Mikasa_zly39楼
2015-03-27 08:47   回复  
五星好评  顶一下,感谢分享!
hyq1298440楼
2015-03-27 14:58   回复  
五星好评  顶一下,感谢分享!
Bright-Ma41楼
2015-04-02 11:44   回复  
五星好评  顶一下,感谢分享!
南峰42楼
2015-04-03 12:12   回复  
五星好评  顶一下,感谢分享!
wangwenju43楼
2015-04-03 21:15   回复  
顶一下,感谢分享!
ykyang44楼
2015-05-19 14:48   回复  
顶一下,感谢分享!
wankeji45楼
2015-05-25 14:22   回复  
五星好评  顶一下,感谢分享!
wangxd022846楼
2015-05-25 21:39   回复  
五星好评  顶一下,感谢分享!
xiang67647楼
2015-05-31 16:15   回复  
五星好评  顶一下,感谢分享!
mechtest48楼
2015-06-01 08:00   回复  
顶一下,感谢分享!
hq1009john49楼
2015-06-28 15:41   回复  
五星好评  顶一下,感谢分享!
2015-06-29 09:33   回复  
五星好评  顶一下,感谢分享!
相关版块跳转 我要订阅楼主 pkusiyuan 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见