|
|
【答案】应助回帖
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ 感谢参与,应助指数 +1 zj15001: 金币+10, ★★★★★最佳答案, 谢谢 2015-03-02 13:36:06 oven1986: LS-EPI+1, 感谢应助。 2015-03-02 22:05:03
Split Bregman algorithms for multiple measurement vector problem
作者:Zou, J (Zou, Jian)[ 2,1 ] ; Fu, YL (Fu, Yuli)[ 2 ] ; Zhang, QH (Zhang, Qiheng)[ 2 ] ; Li, HF (Li, Haifeng)[ 2 ]
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING
卷: 26 期: 1 页: 207-224
DOI: 10.1007/s11045-013-0251-6
出版年: JAN 2015
查看期刊信息
摘要
The standard sparse representation aims to reconstruct sparse signal from single measurement vector which is known as SMV model. In some applications, the SMV model extend to the multiple measurement vector (MMV) model, in which the signal consists of a set of jointly sparse vectors. In this paper, efficient algorithms based on split Bregman iteration are proposed to solve the MMV problems with both constrained form and unconstrained form. The convergence of the proposed algorithms is also discussed. Moreover, the proposed algorithms are used in magnetic resonance imaging reconstruction. Numerical results show the effectiveness of the proposed algorithms.
关键词
作者关键词:Multiple measurement vector problem; Split Bregman iteration; Convergence; MRI reconstruction
KeyWords Plus:SIMULTANEOUS SPARSE APPROXIMATION; RANK AWARENESS; MR-IMAGES; RECONSTRUCTION; RECOVERY
作者信息
通讯作者地址: Fu, YL (通讯作者)
显示增强组织信息的名称 S China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Guangdong, Peoples R China.
地址:
[ 1 ] Yangtze Univ, Sch Informat & Math, Jinzhou 434020, Hubei, Peoples R China
显示增强组织信息的名称 [ 2 ] S China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Guangdong, Peoples R China
电子邮件地址:zoujianjz@gmail.com; fuyuli@scut.edu.cn; qiheng.zhang@gmail.com; lihaifengxx@126.com
基金资助致谢
基金资助机构 授权号
International cooperation project of Guangdong Natural Science Foundation
2009B050700020
NSFC-Guangdong Union Project
U0835003
NSFC
60903170
61004054
61104053
61103122
查看基金资助信息
出版商
SPRINGER, VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
类别 / 分类
研究方向:Computer Science; Engineering
Web of Science 类别:Computer Science, Theory & Methods; Engineering, Electrical & Electronic
文献信息
文献类型:Article
语种:English
入藏号: WOS:000347953000012
ISSN: 0923-6082
eISSN: 1573-0824
其他信息
IDS 号: AZ0RT
Web of Science 核心合集中的 "引用的参考文献": 33
Web of Science 核心合集中的 "被引频次": 0 |
|