CyRhmU.jpeg
²é¿´: 3096  |  »Ø¸´: 13
µ±Ç°Ö»ÏÔʾÂú×ãÖ¸¶¨Ìõ¼þµÄ»ØÌû£¬µã»÷ÕâÀï²é¿´±¾»°ÌâµÄËùÓлØÌû

¸Ö½ðÊõʦ

½ð³æ (СÓÐÃûÆø)

[ÇóÖú] KµãÃܶÈÒÑÓÐ1È˲ÎÓë

ÔÚһƪÂÛÎÄÖп´µ½ÈçϵÄKµãѡȡÃèÊö£º
Monkhorst-Pack k-point grids for the Brillouin-zone integration were applied with linear k-point density higher than 29 per Å-1 along each periodic direction in reciprocal space.

ÇëÎʸ÷λ³æÓÑÈçºÎÀí½âÉÏÃæµÄÃèÊö£¬Ôõô¼ÆËãµÄÔÚµ¹¿Õ¼äÖРÿ¸ö·½ÏòÉϵÄKµãÃܶȣ¿
»Ø¸´´ËÂ¥

» ²ÂÄãϲ»¶

ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

¸Ö½ðÊõʦ

½ð³æ (СÓÐÃûÆø)

Ëͺ컨һ¶ä
ÒýÓûØÌû:
12Â¥: Originally posted by @Ellete-blue at 2015-03-03 12:49:28
Monkhorst-Pack kµãÈ¡ÑùÊÇÔÚµ¹¿Õ¼ä¾ùÔÈÈ¡ÑùµÄÒ»ÖÖ²ßÂÔ£¬ÒªÖªµÀϸ½ÚÄã¿ÉÒԲ鿴ԭʼÎÄÏס£µ¹¿Õ¼ä»ùʸµÄµ¥Î»ÊÇ1/Angstrom,ËùÒÔÄãÌù³öÀ´µÄÎÄÕÂÖеÄhigher than 29 per Å-1 along each periodic direction in recip ...

½âÊ͵ĺÜÇåÎú£¬½ð±ÒÒѾ­Ë͸ø2Â¥ÁË£¬ËÍÄãÒ»¶äºì»¨°É£¬Ð»Ð»£¡
13Â¥2015-03-07 07:46:44
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
²é¿´È«²¿ 14 ¸ö»Ø´ð

skydark

ľ³æ (ÕýʽдÊÖ)

¡¾´ð°¸¡¿Ó¦Öú»ØÌû

¸Ðл²ÎÓ룬ӦÖúÖ¸Êý +1
ÄÇÎÄÕÂÊÇÒÔ Monkhorst-Pack ģʽ ?íÓ‹ËãµÄ
ÁíÒ»·NÊÇ Gamma ģʽ
(ÎÒͨ³£ÊÇßxGammaģʽ)

KücÃܶÈ:
ÀýÈçÄãµÄreciprocal space µÄ lattice constant žé (2*3.14159)/1Å
È»ááÄãÈ¡4‚€KücµÄÔ’
ÄÇÄãµÄKµãÃܶȾÍÊÇ 4*[(2*3.14159)/1Å]
2Â¥2015-03-02 15:57:33
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

¸Ö½ðÊõʦ

½ð³æ (СÓÐÃûÆø)

ÒýÓûØÌû:
2Â¥: Originally posted by skydark at 2015-03-02 15:57:33
ÄÇÎÄÕÂÊÇÒÔ Monkhorst-Pack ģʽ ?íÓ‹ËãµÄ
ÁíÒ»·NÊÇ Gamma ģʽ
(ÎÒͨ³£ÊÇßxGammaģʽ)

KücÃܶÈ:
ÀýÈçÄãµÄreciprocal space µÄ lattice constant žé (2*3.14159)/1Å
È»ááÄãÈ¡4‚€KücµÄÔ’
ÄÇÄãµÄKµãÃÜ¶È ...

ллÄãµÄ°ïÖú£¡
¹ØÓÚKµãÃܶÈÄÇÀÈç¹ûPOSCARÖеľ§¸ñ³£ÊýÊÇ2.9*2.9*3£¨Å£©£¬KµãÈ¡14*14*14£¬ÄÇôÈý¸ö·½ÏòÉϵÄKµãÃܶÈÓ¦¸ÃÊǶàÉÙ£¿
3Â¥2015-03-02 17:39:16
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

skydark

ľ³æ (ÕýʽдÊÖ)

ÒýÓûØÌû:
3Â¥: Originally posted by ¸Ö½ðÊõʦ at 2015-03-02 17:39:16
ллÄãµÄ°ïÖú£¡
¹ØÓÚKµãÃܶÈÄÇÀÈç¹ûPOSCARÖеľ§¸ñ³£ÊýÊÇ2.9*2.9*3£¨Å£©£¬KµãÈ¡14*14*14£¬ÄÇôÈý¸ö·½ÏòÉϵÄKµãÃܶÈÓ¦¸ÃÊǶàÉÙ£¿...

Äãreal spaceµÄ¾§¸ñÝSÊÇ»¥Ïà´¹Ö±µÄ†á?
4Â¥2015-03-02 17:48:02
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
ÐÅÏ¢Ìáʾ
ÇëÌî´¦ÀíÒâ¼û