| 查看: 1109 | 回复: 11 | ||
| 【奖励】 本帖被评价11次,作者pkusiyuan增加金币 8.8 个 | ||
[资源]
Cambridge2008Chaos and Coarse Graining in Statistical Mechanics
|
||
|
1 Basic concepts of dynamical systems theory 1 1.1 Deterministic systems 1 1.2 Unpredictability: systems with many degrees of freedom 7 1.3 Unpredictability: deterministic chaos 12 1.4 Probabilistic aspects of dynamical systems 16 References 23 2 Dynamical indicators for chaotic systems: Lyapunov exponents, entropies and beyond 24 2.1 Dynamical systems approach 25 2.2 Information theory approach 28 2.3 Beyond the Lyapunov exponents and the Kolmogorov–Sinai entropy 44 References 54 3 Coarse graining, entropies and Lyapunov exponents at work 58 3.1 Characterization of the complexity and system modeling 58 3.2 How random is a random number generator? 71 3.3 Lyapunov exponents and complexity in dynamical systems with noise 79 3.4 Conclusions 88 References 89 4 Foundation of statistical mechanics and dynamical systems 92 4.1 The ergodic problem: a brief random walk among an intricate history 93 4.2 Beyond abstract ergodic theory 97 4.3 The connection between analytical mechanics and the ergodic problem 103 4.4 An unexpected result revitalizes interest in the ergodic problem 106 v vi Contents 4.5 Some modern developments 109 4.6 On the role of chaos in statistical mechanics 114 4.7 Some general remarks 116 References 117 5 On the origin of irreversibility 120 5.1 The problem 120 5.2 Toward the solution 122 5.3 Some results 130 5.4 About ensembles, the number of degrees of freedom and chaos 140 References 148 6 The role of chaos in non-equilibrium statistical mechanics 150 6.1 On the connection between the Kolmogorov–Sinai entropy and production rate of the coarse-grained Gibbs entropy 152 6.2 Gibbs and Boltzmann entropies: the role of chaos, interaction and coarse graining 159 6.3 Fluctuation-response relation and chaos 167 6.4 Chaos and pseudochaos for diffusion and conduction 174 6.5 Remarks and perspectives 180 References 182 7 Coarse-graining equations in complex systems 185 7.1 A short parenthesis: secular terms and multiscale analysis 187 7.2 From molecular level to Brownian motion 189 7.3 Diffusion at large scale and eddy diffusivity 198 7.4 The adiabatic piston: a system between the microscopic and macroscopic realms 203 7.5 Remarks and perspectives 210 References 215 8 Renormalization-group approaches 217 8.1 Renormalization group(s): a brief overview 218 8.2 Renormalization groups to cure singular perturbation expansions 220 8.3 A multiscale and constructive approach to capture critical behavior 225 8.4 Renormalization groups: a multiscale approach for asymptotic analysis 236 8.5 Probabilistic viewpoint on renormalization groups 243 8.6 Conclusions and perspectives 262 References 264 Index |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Chaos_and_Coarse_Graining_in_Statistical_Mechanics_-_P._Castiglione_et_al._(Cambridge_University_Press,_2008)(280p).pdf
2015-03-02 08:08:51, 1.44 M
» 猜你喜欢
2025冷门绝学什么时候出结果
已经有3人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有4人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
AI论文写作工具:是科研加速器还是学术作弊器?
已经有3人回复
孩子确诊有中度注意力缺陷
已经有6人回复
2026博士申请-功能高分子,水凝胶方向
已经有6人回复
论文投稿,期刊推荐
已经有4人回复
硕士和导师闹得不愉快
已经有13人回复
请问2026国家基金面上项目会启动申2停1吗
已经有5人回复
同一篇文章,用不同账号投稿对编辑决定是否送审有没有影响?
已经有3人回复
» 本主题相关价值贴推荐,对您同样有帮助:
简单回复
abollo2楼
2015-03-02 11:50
回复
五星好评 顶一下,感谢分享!
2015-03-03 00:41
回复
五星好评 顶一下,感谢分享!
吠陀4楼
2015-03-03 06:44
回复
五星好评 顶一下,感谢分享!
Quan.5楼
2015-03-03 07:02
回复
五星好评 顶一下,感谢分享!
phykid6楼
2015-03-03 23:14
回复
五星好评 顶一下,感谢分享!
wwwzg7楼
2015-03-08 11:29
回复
五星好评 顶一下,感谢分享!
shangda8楼
2015-03-24 06:53
回复
五星好评 顶一下,感谢分享!
迷阳8889楼
2016-09-26 11:47
回复
五星好评 顶一下,感谢分享!
happyfishs10楼
2016-09-27 12:03
回复
五星好评 顶一下,感谢分享!
hewangquan11楼
2016-12-23 08:51
回复
五星好评 顶一下,感谢分享!
ljb19721112楼
2020-08-07 22:18
回复
五星好评 感谢分享! 发自小木虫Android客户端













回复此楼