24小时热门版块排行榜    

CyRhmU.jpeg
查看: 1110  |  回复: 11
【奖励】 本帖被评价11次,作者pkusiyuan增加金币 8.8

pkusiyuan

银虫 (正式写手)


[资源] Cambridge2008Chaos and Coarse Graining in Statistical Mechanics

1 Basic concepts of dynamical systems theory 1
1.1 Deterministic systems 1
1.2 Unpredictability: systems with many degrees of freedom 7
1.3 Unpredictability: deterministic chaos 12
1.4 Probabilistic aspects of dynamical systems 16
References 23
2 Dynamical indicators for chaotic systems: Lyapunov exponents,
entropies and beyond 24
2.1 Dynamical systems approach 25
2.2 Information theory approach 28
2.3 Beyond the Lyapunov exponents and the
Kolmogorov–Sinai entropy 44
References 54
3 Coarse graining, entropies and Lyapunov exponents at work 58
3.1 Characterization of the complexity and system modeling 58
3.2 How random is a random number generator? 71
3.3 Lyapunov exponents and complexity in dynamical systems
with noise 79
3.4 Conclusions 88
References 89
4 Foundation of statistical mechanics and dynamical systems 92
4.1 The ergodic problem: a brief random walk among an
intricate history 93
4.2 Beyond abstract ergodic theory 97
4.3 The connection between analytical mechanics and the
ergodic problem 103
4.4 An unexpected result revitalizes interest in the ergodic problem 106
v
vi Contents
4.5 Some modern developments 109
4.6 On the role of chaos in statistical mechanics 114
4.7 Some general remarks 116
References 117
5 On the origin of irreversibility 120
5.1 The problem 120
5.2 Toward the solution 122
5.3 Some results 130
5.4 About ensembles, the number of degrees of freedom and chaos 140
References 148
6 The role of chaos in non-equilibrium statistical mechanics 150
6.1 On the connection between the Kolmogorov–Sinai entropy
and production rate of the coarse-grained Gibbs entropy 152
6.2 Gibbs and Boltzmann entropies: the role of chaos, interaction
and coarse graining 159
6.3 Fluctuation-response relation and chaos 167
6.4 Chaos and pseudochaos for diffusion and conduction 174
6.5 Remarks and perspectives 180
References 182
7 Coarse-graining equations in complex systems 185
7.1 A short parenthesis: secular terms and multiscale analysis 187
7.2 From molecular level to Brownian motion 189
7.3 Diffusion at large scale and eddy diffusivity 198
7.4 The adiabatic piston: a system between the microscopic and
macroscopic realms 203
7.5 Remarks and perspectives 210
References 215
8 Renormalization-group approaches 217
8.1 Renormalization group(s): a brief overview 218
8.2 Renormalization groups to cure singular perturbation expansions 220
8.3 A multiscale and constructive approach to capture
critical behavior 225
8.4 Renormalization groups: a multiscale approach for
asymptotic analysis 236
8.5 Probabilistic viewpoint on renormalization groups 243
8.6 Conclusions and perspectives 262
References 264
Index
回复此楼

» 本帖附件资源列表

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
abollo2楼
2015-03-02 11:50   回复  
五星好评  顶一下,感谢分享!
2015-03-03 00:41   回复  
五星好评  顶一下,感谢分享!
吠陀4楼
2015-03-03 06:44   回复  
五星好评  顶一下,感谢分享!
Quan.5楼
2015-03-03 07:02   回复  
五星好评  顶一下,感谢分享!
phykid6楼
2015-03-03 23:14   回复  
五星好评  顶一下,感谢分享!
wwwzg7楼
2015-03-08 11:29   回复  
五星好评  顶一下,感谢分享!
shangda8楼
2015-03-24 06:53   回复  
五星好评  顶一下,感谢分享!
迷阳8889楼
2016-09-26 11:47   回复  
五星好评  顶一下,感谢分享!
happyfishs10楼
2016-09-27 12:03   回复  
五星好评  顶一下,感谢分享!
hewangquan11楼
2016-12-23 08:51   回复  
五星好评  顶一下,感谢分享!
ljb19721112楼
2020-08-07 22:18   回复  
五星好评  感谢分享! 发自小木虫Android客户端
相关版块跳转 我要订阅楼主 pkusiyuan 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见