24小时热门版块排行榜    

查看: 1274  |  回复: 13
【奖励】 本帖被评价13次,作者pkusiyuan增加金币 10.4

pkusiyuan

银虫 (正式写手)


[资源] Cambridge2011年Planetary Surface Processes

Preface page xv
Acknowledgments xix
1 The grand tour 1
1.1 Structure of the Solar System 2
1.1.1 Major facts of the Solar System 3
1.1.2 Varieties of objects in the Solar System 4
1.2 C lassification of the planets 5
1.2.1 R etention of planetary atmospheres 6
1.2.2 Geologic processes on the terrestrial planets and moons 7
1.3 Planetary surfaces and history 9
1.3.1 T he Moon 10
1.3.2 Mercury 14
1.3.3 Venus 15
1.3.4 Mars 16
1.3.5 Jupiter’s Galilean satellites 18
1.3.6 T itan 20
1.3.7 T he Earth 22
Further reading 24
2 T he shapes of planets and moons 25
2.1 T he overall shapes of planets 26
2.1.1 N on-rotating planets: spheres 26
2.1.2 R otating planets: oblate spheroids 27
2.1.3 T idally deformed bodies: triaxial ellipsoids 30
2.1.4 A scaling law for planetary figures? 34
2.1.5 C enter of mass to center of figure offsets 34
2.1.6 T umbling moons and planets 35
2.2 Higher-order topography: continents and mountains 36
2.2.1 How high is high? 36
2.2.2 E levation statistics: hypsometric curves 38
Box 2.1 Topographic roughness 40
Contents
viii Contents
2.2.3 Where are we? Latitude and longitude on the planets 41
2.3 Spectral representation of topography 44
Further reading 47
Exercises 47
3 Strength versus gravity 49
3.1 T opography and stress 49
Box 3.1 Collapse of topography on a strengthless planet 51
3.2 Stress and strain: a primer 52
3.2.1 Strain 52
3.2.2 Stress 53
3.2.3 Stress and strain combined: Hooke’s law 55
3.2.4 Stress, strain, and time: viscosity 57
3.3 L inking stress and strain: Jeffreys’ theorem 58
3.3.1 E lastic deformation and topographic support 58
3.3.2 E lastic stress solutions and a limit theorem 60
3.3.3 A model of planetary topography 62
3.4 T he nature of strength 64
3.4.1 R heology: elastic, viscous, plastic, and more 64
3.4.2 L ong-term strength 64
Box 3.2 The ultimate strength of solids 65
3.4.3 C reep: strength cannot endure 74
3.4.4 Planetary strength profiles 80
3.5 Mechanisms of topographic support 82
3.5.1 Plastic strength: Jeffreys’ limit again 82
3.5.2 Viscous relaxation of topography 82
3.5.3 T he topographic advantages of density differences: isostatic
support 87
3.5.4 Dynamic topography 90
3.5.5 F loating elastic shells: flexural support of topographic loads 91
3.6 C lues to topographic support 93
Box 3.3 Flexure of a floating elastic layer 94
3.6.1 F lexural profiles 96
3.6.2 A nomalies in the acceleration of gravity 97
3.6.3 Geoid anomalies 99
Box 3.4 The ambiguous lithosphere 100
Further reading 100
Exercises 101
4 T ectonics 104
4.1 What is tectonic deformation? 104
4.1.1 R heologic structure of planets 105
4.1.2 O ne- and multiple-plate planets 107
Contents ix
4.2 Sources of tectonic stress 108
4.2.1 E xternal sources of tectonic stress 108
4.2.2 Internal sources of tectonic stress 109
4.3 Planetary engines: heat sources and heat transfer 113
4.3.1 A ccretional heat 113
4.3.2 T idal dissipation in planetary interiors 114
4.3.3 Heat transfer by thermal conduction and radiogenic heat
production 116
4.3.4 T hermal convection and planetary heat transfer 121
4.4 R ates of tectonic deformation 127
4.5 F lexures and folds 128
4.5.1 C ompression: folding of rocks 128
Box 4.1 Elastic and viscous buckling theory 130
4.5.2 F olding vs. faulting: fault-bend folds 133
4.5.3 E xtension: boudinage or necking instability 135
4.5.4 Gravitational instability: diapirs and intrusions 136
4.6 F ractures and faults 139
4.6.1 Why faults? Localization 139
4.6.2 Joints, joint networks, and lineaments 141
4.6.3 F aults: Anderson’s theory of faulting 143
Box 4.2 Dip angle of Anderson faults 147
4.7 T ectonic associations 154
4.7.1 Planetary grid systems 154
4.7.2 F lexural domes and basins 155
4.7.3 Stress interactions: refraction of grabens by loads 157
4.7.4 Io’s sinking lithosphere 158
4.7.5 T errestrial plate tectonics 160
Further reading 161
Exercises 162
5 Volcanism 169
5.1 Melting and magmatism 169
5.1.1 Why is planetary volcanism so common? 170
Box 5.1 The adiabatic gradient 173
5.1.2 Melting real planets 175
5.1.3 Physical properties of magma 183
5.1.4 Segregation and ascent of magma 187
Box 5.2 The standpipe model of magma ascent 189
5.2 Mechanics of eruption and volcanic constructs 194
5.2.1 C entral versus fissure eruptions 194
5.2.2 Physics of quiescent versus explosive eruptions 195
Box 5.3 A speed limit for volcanic ejecta 200
x Contents
5.2.3 Volcanic surface features 204
5.3 L ava flows, domes, and plateaus 208
5.3.1 L ava flow morphology 208
5.3.2 T he mechanics of lava flows 210
5.3.3 L ava domes, channels, and plateaus 214
Further reading 218
Exercises 218
6 Impact cratering 222
6.1 History of impact crater studies 222
6.2 Impact crater morphology 223
6.2.1 Simple craters 224
6.2.2 C omplex craters 224
6.2.3 Multiring basins 226
6.2.4 A berrant crater types 228
6.2.5 Degraded crater morphology 229
6.3 C ratering mechanics 229
6.3.1 C ontact and compression 230
6.3.2 E xcavation 233
6.3.3 Modification 238
Box 6.1 Maxwell’s Z model of crater excavation 242
6.4 E jecta deposits 244
6.4.1 Ballistic sedimentation 246
6.4.2 F luidized ejecta blankets 248
6.4.3 Secondary craters 250
6.4.4 O blique impact 251
6.5 Scaling of crater dimensions 251
6.5.1 C rater diameter scaling 252
6.5.2 Impact melt mass 253
6.6 A tmospheric interactions 254
6.7 C ratered landscapes 255
6.7.1 Description of crater populations 256
6.7.2 E volution of crater populations 261
6.8 Dating planetary surfaces with impact craters 262
6.8.1 b > 2 population evolution 263
6.8.2 b < 2 population evolution 265
6.8.3 L eading/trailing asymmetry 266
6.9 Impact cratering and planetary evolution 267
6.9.1 Planetary accretion 267
6.9.2 Impact catastrophism 268
6.9.3 O rigin of the Moon 269
6.9.4 L ate Heavy Bombardment 269
Contents xi
6.9.5 Impact-induced volcanism? 270
6.9.6 Biological extinctions 271
Further reading 271
Exercises 272
7 R egoliths, weathering, and surface texture 276
7.1 L unar and asteroid regoliths: soil on airless bodies 276
7.1.1 Impact comminution and gardening 279
Box 7.1 Growth of the lunar regolith 282
7.1.2 R egolith maturity 285
7.1.3 R adiation effects on airless bodies 286
7.2 T emperatures beneath planetary surfaces 288
7.2.1 Diurnal and seasonal temperature cycles 289
7.2.2 Heat transfer in regoliths 290
7.2.3 T hermal inertia 293
7.3 Weathering: processes at the surface/atmosphere
interface 293
7.3.1 C hemical weathering 295
7.3.2 Physical weathering 300
7.3.3 Sublimation weathering 306
7.3.4 Duricrusts and cavernous weathering 308
7.3.5 Desert varnish 309
7.3.6 T errestrial soils 310
7.4 Surface textures 311
7.4.1 “Fairy castle” lunar surface structure 311
7.4.2 Stone pavements: why the Brazil nuts are on top 313
7.4.3 Mudcracks, desiccation features 315
Further reading 316
Exercises 316
8 Slopes and mass movement 319
8.1 Soil creep 319
8.1.1 Mechanism of soil creep 320
8.1.2 L andforms of creeping terrain 323
8.2 L andslides 326
8.2.1 L oose debris: cohesion c = 0 327
8.2.2 C ohesive materials c > 0 331
Box 8.1 Crater terraces as slump blocks 336
8.2.3 Gravity currents 339
8.2.4 L ong-runout landslides or sturzstroms 340
Further reading 344
Exercises 345
xii Contents
9 Wind 348
9.1 Sand vs. dust 349
9.1.1 T erminal velocity 349
9.1.2 Suspension of small particles 352
9.2 Motion of sand-sized grains 353
9.2.1 Initiation of motion 354
9.2.2 T ransport by the wind 361
9.2.3 T he entrainment of dust 363
9.2.4 A brasion by moving sand 365
9.3 E olian landforms 365
9.3.1 T he instability of sandy surfaces 365
9.3.2 R ipples, ridges, and sand shadows 366
Box 9.1 Kamikaze grains on Mars 368
9.3.3 Dunes 371
9.3.4 Y ardangs and deflation 376
9.3.5 Wind streaks 377
9.3.6 T ransient phenomena 378
Further reading 379
Exercises 380
10 Water 382
10.1 “Hydrologic” cycles 383
10.1.1 T ime, flow, and chance 383
10.1.2 R ainfall: infiltration and runoff 386
10.2 Water below the surface 388
10.2.1 T he water table: the piezometric surface 388
10.2.2 Percolation flow 390
10.2.3 Springs and sapping 392
Box 10.1 How long can streams flow after the rain stops? 393
10.3 Water on the surface 395
10.3.1 O verland flow 396
10.3.2 Streamflow 401
10.3.3 C hannels 407
Box 10.2 Analysis of stream networks 416
10.3.4 Standing water: oceans, lakes, playas 418
10.3.5 F luvial landscapes 428
Further reading 431
Exercises 432
11 Ice 434
11.1 Ice on planetary surfaces 434
11.1.1 Ice within the hydrologic cycle 435
11.1.2 Glacier classification 436
11.1.3 R ock glaciers 438
Contents xiii
11.2 F low of glaciers 439
11.2.1 Glen’s law 440
11.2.2 T he plastic-flow approximation 442
11.2.3 O ther ices, other rheologies 443
11.2.4 Basal sliding 444
Box 11.1 Salt glaciers and solution creep 445
11.3 Glacier morphology 446
11.3.1 F low velocities in glaciers and ice sheets 447
11.3.2 L ongitudinal flow regime and crevasses 448
11.3.3 Ice-sheet elevation profile 449
11.4 Glacial landforms 451
11.4.1 Glacial erosion 451
11.4.2 Glacial deposition 452
11.5 Ice in the ground 454
11.5.1 Permafrost 455
11.5.2 Patterned ground 459
11.5.3 T hermokarst 462
Further reading 462
Exercises 463
References 465
Index 485
Color plates appear between pages 236 and 237
回复此楼

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:libolin3@tal.com
  • 附件 1 : Planetary_Surface_Processes_-_H._Melosh_(Cambridge,_2011)_BBS.pdf
  • 2015-03-01 09:36:44, 10.88 M

» 收录本帖的淘贴专辑推荐

书籍下载网站 专业书籍(外文版)WM 物理化学材料类书籍

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
2015-03-01 10:32   回复  
五星好评  顶一下,感谢分享!
yu51613楼
2015-03-01 17:21   回复  
五星好评  顶一下,感谢分享!
phykid4楼
2015-03-01 22:36   回复  
五星好评  顶一下,感谢分享!
2015-03-02 06:59   回复  
五星好评  顶一下,感谢分享!
wjy20116楼
2015-03-02 18:01   回复  
五星好评  顶一下,感谢分享!
ha16687楼
2015-03-03 16:25   回复  
五星好评  顶一下,感谢分享!
kuangpan8楼
2015-03-05 10:17   回复  
五星好评  顶一下,感谢分享!
2015-03-05 13:10   回复  
五星好评  顶一下,感谢分享!
yauun10楼
2015-05-06 21:11   回复  
五星好评  顶一下,感谢分享!
dengxg6811楼
2015-05-15 20:54   回复  
五星好评  顶一下,感谢分享!
wb02912楼
2016-01-07 20:12   回复  
五星好评  顶一下,感谢分享!
cryohuang13楼
2016-01-07 20:15   回复  
五星好评  顶一下,感谢分享!
2017-06-11 13:30   回复  
五星好评  顶一下,感谢分享!
相关版块跳转 我要订阅楼主 pkusiyuan 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
最具人气热帖推荐 [查看全部] 作者 回/看 最后发表
[基金申请] 博后面上今天有bug可以看到是否资助? +20 lyfbangong 2024-06-12 31/1550 2024-06-15 21:18 by since—2010
[基金申请] 博后基金,博管会会提前知道消息吗? +3 yuyiang 2024-06-13 3/150 2024-06-15 19:52 by Lynn212
[基金申请] 博士后创新人才支持计划公示 +9 aishida144 2024-06-14 13/650 2024-06-15 19:18 by 默默挥手
[考博] 34岁读博士晚吗 +25 emitdne 2024-06-13 25/1250 2024-06-15 16:27 by wubo6066233
[基金申请] BO4的YQ答辩通知发布了吗? +6 博学笃行 2024-06-11 6/300 2024-06-15 16:04 by 悲催科研狗
[基金申请] 为什么我的博后基金还在流动站审核中?不会是学院给我卡了吧? +14 王凯12 2024-06-13 26/1300 2024-06-15 15:22 by 好人与坏人
[论文投稿] 求机械类四区sci推荐 5+3 迷茫小旷 2024-06-14 4/200 2024-06-15 11:25 by bobvan
[找工作] 杭电、天津科技、青农和宁波工程学院如何选? +9 味道很好啊 2024-06-13 15/750 2024-06-15 09:59 by yulan19992002
[基金申请] E12面上申请 +4 汉风之遗 2024-06-13 4/200 2024-06-14 15:28 by 天外飞去来
[有机交流] ππ堆积会发生在有机溶剂中吗 5+3 zibuyu0420 2024-06-13 4/200 2024-06-14 14:17 by 小肉干
[基金申请] 国自然基金公布的时候基金号有吗 +8 潇洒怡惜 2024-06-13 11/550 2024-06-14 11:24 by JRfei
[基金申请] 75批博后基金 +10 kyukitu 2024-06-13 13/650 2024-06-14 10:31 by kyukitu
[论文投稿] 最近写了一篇控制优化领域的文章,可以投哪里啊?有没有水一些的期刊推荐 +7 香瓜木香 2024-06-12 13/650 2024-06-14 07:05 by 香瓜木香
[基金申请] 工材E10口函评结束了吗 10+3 我1的飞翔 2024-06-13 5/250 2024-06-14 06:35 by nono2009
[基金申请] 博士后面上项目状态还是专家评审吗 10+9 Thatcheremu 2024-06-13 55/2750 2024-06-13 21:23 by 乌合麒麟
[基金申请] 连续两年医学口青年项目初审体会 +11 进击的荣耀 2024-06-09 18/900 2024-06-13 17:27 by 进击的荣耀
[硕博家园] 机械研究生如何拿到年薪40+w +13 阿巴阿巴哦哦 2024-06-11 15/750 2024-06-13 15:40 by 113745685
[考博] 博导选择 +3 bing85977 2024-06-12 3/150 2024-06-13 15:34 by 我是邱尧
[论文投稿] with editor日期变更 +3 慎独的小花卷 2024-06-12 8/400 2024-06-13 11:00 by 慎独的小花卷
[论文投稿] 摩擦磨损论文投稿 +3 jmysan 2024-06-12 3/150 2024-06-13 08:36 by 莱茵润色
信息提示
请填处理意见