24小时热门版块排行榜    

查看: 1266  |  回复: 13
【奖励】 本帖被评价13次,作者pkusiyuan增加金币 10.4

pkusiyuan

银虫 (正式写手)


[资源] Cambridge2011年Planetary Surface Processes

Preface page xv
Acknowledgments xix
1 The grand tour 1
1.1 Structure of the Solar System 2
1.1.1 Major facts of the Solar System 3
1.1.2 Varieties of objects in the Solar System 4
1.2 C lassification of the planets 5
1.2.1 R etention of planetary atmospheres 6
1.2.2 Geologic processes on the terrestrial planets and moons 7
1.3 Planetary surfaces and history 9
1.3.1 T he Moon 10
1.3.2 Mercury 14
1.3.3 Venus 15
1.3.4 Mars 16
1.3.5 Jupiter’s Galilean satellites 18
1.3.6 T itan 20
1.3.7 T he Earth 22
Further reading 24
2 T he shapes of planets and moons 25
2.1 T he overall shapes of planets 26
2.1.1 N on-rotating planets: spheres 26
2.1.2 R otating planets: oblate spheroids 27
2.1.3 T idally deformed bodies: triaxial ellipsoids 30
2.1.4 A scaling law for planetary figures? 34
2.1.5 C enter of mass to center of figure offsets 34
2.1.6 T umbling moons and planets 35
2.2 Higher-order topography: continents and mountains 36
2.2.1 How high is high? 36
2.2.2 E levation statistics: hypsometric curves 38
Box 2.1 Topographic roughness 40
Contents
viii Contents
2.2.3 Where are we? Latitude and longitude on the planets 41
2.3 Spectral representation of topography 44
Further reading 47
Exercises 47
3 Strength versus gravity 49
3.1 T opography and stress 49
Box 3.1 Collapse of topography on a strengthless planet 51
3.2 Stress and strain: a primer 52
3.2.1 Strain 52
3.2.2 Stress 53
3.2.3 Stress and strain combined: Hooke’s law 55
3.2.4 Stress, strain, and time: viscosity 57
3.3 L inking stress and strain: Jeffreys’ theorem 58
3.3.1 E lastic deformation and topographic support 58
3.3.2 E lastic stress solutions and a limit theorem 60
3.3.3 A model of planetary topography 62
3.4 T he nature of strength 64
3.4.1 R heology: elastic, viscous, plastic, and more 64
3.4.2 L ong-term strength 64
Box 3.2 The ultimate strength of solids 65
3.4.3 C reep: strength cannot endure 74
3.4.4 Planetary strength profiles 80
3.5 Mechanisms of topographic support 82
3.5.1 Plastic strength: Jeffreys’ limit again 82
3.5.2 Viscous relaxation of topography 82
3.5.3 T he topographic advantages of density differences: isostatic
support 87
3.5.4 Dynamic topography 90
3.5.5 F loating elastic shells: flexural support of topographic loads 91
3.6 C lues to topographic support 93
Box 3.3 Flexure of a floating elastic layer 94
3.6.1 F lexural profiles 96
3.6.2 A nomalies in the acceleration of gravity 97
3.6.3 Geoid anomalies 99
Box 3.4 The ambiguous lithosphere 100
Further reading 100
Exercises 101
4 T ectonics 104
4.1 What is tectonic deformation? 104
4.1.1 R heologic structure of planets 105
4.1.2 O ne- and multiple-plate planets 107
Contents ix
4.2 Sources of tectonic stress 108
4.2.1 E xternal sources of tectonic stress 108
4.2.2 Internal sources of tectonic stress 109
4.3 Planetary engines: heat sources and heat transfer 113
4.3.1 A ccretional heat 113
4.3.2 T idal dissipation in planetary interiors 114
4.3.3 Heat transfer by thermal conduction and radiogenic heat
production 116
4.3.4 T hermal convection and planetary heat transfer 121
4.4 R ates of tectonic deformation 127
4.5 F lexures and folds 128
4.5.1 C ompression: folding of rocks 128
Box 4.1 Elastic and viscous buckling theory 130
4.5.2 F olding vs. faulting: fault-bend folds 133
4.5.3 E xtension: boudinage or necking instability 135
4.5.4 Gravitational instability: diapirs and intrusions 136
4.6 F ractures and faults 139
4.6.1 Why faults? Localization 139
4.6.2 Joints, joint networks, and lineaments 141
4.6.3 F aults: Anderson’s theory of faulting 143
Box 4.2 Dip angle of Anderson faults 147
4.7 T ectonic associations 154
4.7.1 Planetary grid systems 154
4.7.2 F lexural domes and basins 155
4.7.3 Stress interactions: refraction of grabens by loads 157
4.7.4 Io’s sinking lithosphere 158
4.7.5 T errestrial plate tectonics 160
Further reading 161
Exercises 162
5 Volcanism 169
5.1 Melting and magmatism 169
5.1.1 Why is planetary volcanism so common? 170
Box 5.1 The adiabatic gradient 173
5.1.2 Melting real planets 175
5.1.3 Physical properties of magma 183
5.1.4 Segregation and ascent of magma 187
Box 5.2 The standpipe model of magma ascent 189
5.2 Mechanics of eruption and volcanic constructs 194
5.2.1 C entral versus fissure eruptions 194
5.2.2 Physics of quiescent versus explosive eruptions 195
Box 5.3 A speed limit for volcanic ejecta 200
x Contents
5.2.3 Volcanic surface features 204
5.3 L ava flows, domes, and plateaus 208
5.3.1 L ava flow morphology 208
5.3.2 T he mechanics of lava flows 210
5.3.3 L ava domes, channels, and plateaus 214
Further reading 218
Exercises 218
6 Impact cratering 222
6.1 History of impact crater studies 222
6.2 Impact crater morphology 223
6.2.1 Simple craters 224
6.2.2 C omplex craters 224
6.2.3 Multiring basins 226
6.2.4 A berrant crater types 228
6.2.5 Degraded crater morphology 229
6.3 C ratering mechanics 229
6.3.1 C ontact and compression 230
6.3.2 E xcavation 233
6.3.3 Modification 238
Box 6.1 Maxwell’s Z model of crater excavation 242
6.4 E jecta deposits 244
6.4.1 Ballistic sedimentation 246
6.4.2 F luidized ejecta blankets 248
6.4.3 Secondary craters 250
6.4.4 O blique impact 251
6.5 Scaling of crater dimensions 251
6.5.1 C rater diameter scaling 252
6.5.2 Impact melt mass 253
6.6 A tmospheric interactions 254
6.7 C ratered landscapes 255
6.7.1 Description of crater populations 256
6.7.2 E volution of crater populations 261
6.8 Dating planetary surfaces with impact craters 262
6.8.1 b > 2 population evolution 263
6.8.2 b < 2 population evolution 265
6.8.3 L eading/trailing asymmetry 266
6.9 Impact cratering and planetary evolution 267
6.9.1 Planetary accretion 267
6.9.2 Impact catastrophism 268
6.9.3 O rigin of the Moon 269
6.9.4 L ate Heavy Bombardment 269
Contents xi
6.9.5 Impact-induced volcanism? 270
6.9.6 Biological extinctions 271
Further reading 271
Exercises 272
7 R egoliths, weathering, and surface texture 276
7.1 L unar and asteroid regoliths: soil on airless bodies 276
7.1.1 Impact comminution and gardening 279
Box 7.1 Growth of the lunar regolith 282
7.1.2 R egolith maturity 285
7.1.3 R adiation effects on airless bodies 286
7.2 T emperatures beneath planetary surfaces 288
7.2.1 Diurnal and seasonal temperature cycles 289
7.2.2 Heat transfer in regoliths 290
7.2.3 T hermal inertia 293
7.3 Weathering: processes at the surface/atmosphere
interface 293
7.3.1 C hemical weathering 295
7.3.2 Physical weathering 300
7.3.3 Sublimation weathering 306
7.3.4 Duricrusts and cavernous weathering 308
7.3.5 Desert varnish 309
7.3.6 T errestrial soils 310
7.4 Surface textures 311
7.4.1 “Fairy castle” lunar surface structure 311
7.4.2 Stone pavements: why the Brazil nuts are on top 313
7.4.3 Mudcracks, desiccation features 315
Further reading 316
Exercises 316
8 Slopes and mass movement 319
8.1 Soil creep 319
8.1.1 Mechanism of soil creep 320
8.1.2 L andforms of creeping terrain 323
8.2 L andslides 326
8.2.1 L oose debris: cohesion c = 0 327
8.2.2 C ohesive materials c > 0 331
Box 8.1 Crater terraces as slump blocks 336
8.2.3 Gravity currents 339
8.2.4 L ong-runout landslides or sturzstroms 340
Further reading 344
Exercises 345
xii Contents
9 Wind 348
9.1 Sand vs. dust 349
9.1.1 T erminal velocity 349
9.1.2 Suspension of small particles 352
9.2 Motion of sand-sized grains 353
9.2.1 Initiation of motion 354
9.2.2 T ransport by the wind 361
9.2.3 T he entrainment of dust 363
9.2.4 A brasion by moving sand 365
9.3 E olian landforms 365
9.3.1 T he instability of sandy surfaces 365
9.3.2 R ipples, ridges, and sand shadows 366
Box 9.1 Kamikaze grains on Mars 368
9.3.3 Dunes 371
9.3.4 Y ardangs and deflation 376
9.3.5 Wind streaks 377
9.3.6 T ransient phenomena 378
Further reading 379
Exercises 380
10 Water 382
10.1 “Hydrologic” cycles 383
10.1.1 T ime, flow, and chance 383
10.1.2 R ainfall: infiltration and runoff 386
10.2 Water below the surface 388
10.2.1 T he water table: the piezometric surface 388
10.2.2 Percolation flow 390
10.2.3 Springs and sapping 392
Box 10.1 How long can streams flow after the rain stops? 393
10.3 Water on the surface 395
10.3.1 O verland flow 396
10.3.2 Streamflow 401
10.3.3 C hannels 407
Box 10.2 Analysis of stream networks 416
10.3.4 Standing water: oceans, lakes, playas 418
10.3.5 F luvial landscapes 428
Further reading 431
Exercises 432
11 Ice 434
11.1 Ice on planetary surfaces 434
11.1.1 Ice within the hydrologic cycle 435
11.1.2 Glacier classification 436
11.1.3 R ock glaciers 438
Contents xiii
11.2 F low of glaciers 439
11.2.1 Glen’s law 440
11.2.2 T he plastic-flow approximation 442
11.2.3 O ther ices, other rheologies 443
11.2.4 Basal sliding 444
Box 11.1 Salt glaciers and solution creep 445
11.3 Glacier morphology 446
11.3.1 F low velocities in glaciers and ice sheets 447
11.3.2 L ongitudinal flow regime and crevasses 448
11.3.3 Ice-sheet elevation profile 449
11.4 Glacial landforms 451
11.4.1 Glacial erosion 451
11.4.2 Glacial deposition 452
11.5 Ice in the ground 454
11.5.1 Permafrost 455
11.5.2 Patterned ground 459
11.5.3 T hermokarst 462
Further reading 462
Exercises 463
References 465
Index 485
Color plates appear between pages 236 and 237
回复此楼

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:libolin3@tal.com
  • 附件 1 : Planetary_Surface_Processes_-_H._Melosh_(Cambridge,_2011)_BBS.pdf
  • 2015-03-01 09:36:44, 10.88 M

» 收录本帖的淘贴专辑推荐

书籍下载网站 专业书籍(外文版)WM 物理化学材料类书籍

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
2015-03-01 10:32   回复  
五星好评  顶一下,感谢分享!
yu51613楼
2015-03-01 17:21   回复  
五星好评  顶一下,感谢分享!
phykid4楼
2015-03-01 22:36   回复  
五星好评  顶一下,感谢分享!
2015-03-02 06:59   回复  
五星好评  顶一下,感谢分享!
wjy20116楼
2015-03-02 18:01   回复  
五星好评  顶一下,感谢分享!
ha16687楼
2015-03-03 16:25   回复  
五星好评  顶一下,感谢分享!
kuangpan8楼
2015-03-05 10:17   回复  
五星好评  顶一下,感谢分享!
2015-03-05 13:10   回复  
五星好评  顶一下,感谢分享!
yauun10楼
2015-05-06 21:11   回复  
五星好评  顶一下,感谢分享!
dengxg6811楼
2015-05-15 20:54   回复  
五星好评  顶一下,感谢分享!
wb02912楼
2016-01-07 20:12   回复  
五星好评  顶一下,感谢分享!
cryohuang13楼
2016-01-07 20:15   回复  
五星好评  顶一下,感谢分享!
2017-06-11 13:30   回复  
五星好评  顶一下,感谢分享!
相关版块跳转 我要订阅楼主 pkusiyuan 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
最具人气热帖推荐 [查看全部] 作者 回/看 最后发表
[基金申请] 化学B口多少分能上会呀 +5 WOWO159357 2024-05-22 12/600 2024-05-23 10:57 by WOWO159357
[论文投稿] Neurocomputing 外审结束 +4 mollyzhang_2003 2024-05-23 4/200 2024-05-23 10:53 by topedit
[电化学] 如何证明电极上镀上金了? 10+3 刻印时光 2024-05-22 3/150 2024-05-23 10:12 by FuMmm
[论文投稿] 关于通讯作者 5+4 irikiar 2024-05-21 4/200 2024-05-23 09:43 by moyoushang
[有机交流] TsCl保护羟基为什么不反应 +6 853015158 2024-05-21 23/1150 2024-05-23 08:41 by tangfh1973
[教师之家] 有没有在职教师同时做博后的? +6 克雷斯 2024-05-20 8/400 2024-05-23 08:08 by 克雷斯
[硕博家园] 超过35岁的海外博士还可以进高校吗? +6 905452934 2024-05-20 7/350 2024-05-23 07:54 by luwangba
[论文投稿] word转成pdf之后公式里面的字体变了,正文字体没变。 +9 1255037206 2024-05-20 11/550 2024-05-23 05:54 by tjushede
[基金申请] bless bless bless bless bless bless +6 chenwenqnig 2024-05-19 7/350 2024-05-22 22:59 by 957083516
[论文投稿] 为什么有的影响因子高的期刊分区不高呢? +5 安处一室 2024-05-21 5/250 2024-05-22 17:46 by LittleBush
[基金申请] 国自然的面上项目,5个审稿人,5个B能上会吗? 4+10 lancet0903 2024-05-20 32/1600 2024-05-22 15:45 by 潇湘之迷
[硕博家园] 博士复试,申请成绩复核,有机会翻盘吗? +15 长海二声笑 2024-05-21 22/1100 2024-05-22 12:44 by 带甲三千
[论文投稿] 投稿journal of energy chemistry +3 小可爱嘿呀 2024-05-21 3/150 2024-05-22 11:11 by xs74101122
[硕博家园] 博三一直没文章怎么办 +27 133456 2024-05-17 45/2250 2024-05-22 06:56 by dong5391
[基金申请] 太诡异了,五月底还有没有送审的。。 +12 hdzw9071 2024-05-21 12/600 2024-05-21 12:43 by dxcharlary
[论文投稿] 论文一审意见回来后发现实验程序编错了论证分析部分可能要大改 5+4 hshhenb 2024-05-20 5/250 2024-05-21 11:03 by bnullh
[基金申请] 这个模块怎么成了烧香拜佛的地方了 +7 shrz98 2024-05-18 7/350 2024-05-21 10:26 by lancet0903
[论文投稿] SENSORS AND ACTUATORS B-CHEMICAL 15+4 荣小撇 2024-05-20 4/200 2024-05-21 10:07 by ca0yan9
[基金申请] 有知道工材e01情况的吗? +13 xiaopang8958 2024-05-17 19/950 2024-05-20 09:52 by 蜕变123~
[教师之家] “直接受聘正高专业技术职务”怎么理解 +8 ZHONGWU_U 2024-05-17 10/500 2024-05-19 18:29 by Quakerbird
信息提示
请填处理意见