24小时热门版块排行榜    

查看: 437  |  回复: 1
本帖产生 1 个 ,点击这里进行查看
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

Paulwolf

荣誉版主 (文坛精英)

非线性控制领域新人一枚

优秀版主优秀版主优秀版主优秀版主优秀版主

【答案】应助回帖

★ ★ ★ ★ ★
感谢参与,应助指数 +1
dance2012: 金币+5, ★★★★★最佳答案, 谢谢 2015-02-28 20:34:04
sunshan4379: LS-EPI+1, 感谢应助! 2015-03-01 10:33:44
Accession number:       
20150200418393
        Title:        Covering-based rough sets on covering-circuit matroids
        Authors:        Yang, Bin1 Email author yangbin-0906tdcq@126.com; Zhu, William1 Email author williamfengzhu@gmail.com
        Author affiliation:        1 Lab of Granular Computing, Minnan Normal University, Zhangzhou, China
        Corresponding author:        Yang, Bin
        Source title:        2014 11th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2014
        Abbreviated source title:        Int. Conf. Fuzzy Syst. Knowl. Discov., FSKD
        Issue date:        December 9, 2014
        Publication year:        2014
        Pages:        49-54
        Article number:        6980805
        Language:        English
        ISBN-13:        9781479951482
        Document type:        Conference article (CA)
        Conference name:        2014 11th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2014
        Conference date:        August 19, 2014 - August 21, 2014
        Conference location:        Xiamen, China
        Conference code:        109675
        Publisher:        Institute of Electrical and Electronics Engineers Inc.
        Abstract:        Rough set theory has been proposed by Pawlak as a useful and powerful tool for dealing with uncertainty, granularity, and incompleteness of knowledge in information systems. Matroid theory is a branch of combinatorial mathematics and widely used in optimization. Therefore, it is a good idea to integrate rough sets with matroids. In this paper, four types of covering approximation operators and their relationships are studied from the viewpoint of matroids. First, we define a new type of matroids named covering-circuit matroids whose all circuits form a covering. Second, for a covering-circuit matroid, we study the properties of the circuits of it from the perspective of coverings. Third, four types of covering approximation operators are represented by the circuits of the covering-circuit matroids. Moreover, we also investigate the relationships among four covering upper approximation operators. Finally, the conditions under which every type of covering upper approximation operator is the closure operator of the matroid are revealed. These results show many potential connections between covering-based rough sets and matroids. © 2014 IEEE.
        Number of references:        21
        Main heading:        Rough set theory
        Controlled terms:        Approximation algorithms  -  Combinatorial mathematics  -  Electric network analysis  -  Formal logic  -  Matrix algebra  -  Networks (circuits)  -  Set theory
        Uncontrolled terms:        Approximation operators  -  Circuit matroid  -  Closure operators  -  covering  -  matroid  -  Matroid theory  -  Upper approximation
        Classification code:        703.1 Electric Networks -  703.1.1 Electric Network Analysis -  721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory -  921 Mathematics
        DOI:        10.1109/FSKD.2014.6980805
        Database:        Compendex
                Compilation and indexing terms, © 2015 Elsevier Inc.
2楼2015-02-28 20:30:41
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 dance2012 的主题更新
信息提示
请填处理意见