| 查看: 2731 | 回复: 35 | ||||
| 【奖励】 本帖被评价34次,作者pkusiyuan增加金币 27 个 | ||||
[资源]
剑桥2010年英文原版Galaxy Formation and Evolution
|
||||
|
The rapidly expanding field of galaxy formation lies at the interfaces of astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field. Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structures; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium. Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies. HOUJUN MO is Professor of Astrophysics at the University of Massachusetts. He is known for his work on the formation and clustering of galaxies and their dark matter halos. FRANK VAN DEN BOSCH is Assistant Professor at Yale University, and is known for his studies of the formation, dynamics, and clustering of galaxies. SIMON WHITE is Director at the Max Planck Institute for Astrophysics in Garching. He is one of the originators of the modern theory of galaxy formation and has received numerous international prizes and honors. Jointly and separately the authors have published almost 500 papers in the refereed professional literature, most of them on topics related to the subject of this book. 1 Introduction 1 1.1 The Diversity of the Galaxy Population 2 1.2 Basic Elements of Galaxy Formation 5 1.2.1 The Standard Model of Cosmology 6 1.2.2 Initial Conditions 6 1.2.3 Gravitational Instability and Structure Formation 7 1.2.4 Gas Cooling 8 1.2.5 Star Formation 8 1.2.6 Feedback Processes 9 1.2.7 Mergers 10 1.2.8 Dynamical Evolution 12 1.2.9 Chemical Evolution 12 1.2.10 Stellar Population Synthesis 13 1.2.11 The Intergalactic Medium 13 1.3 Time Scales 14 1.4 A Brief History of Galaxy Formation 15 1.4.1 Galaxies as Extragalactic Objects 15 1.4.2 Cosmology 16 1.4.3 Structure Formation 18 1.4.4 The Emergence of the Cold Dark Matter Paradigm 20 1.4.5 Galaxy Formation 22 2 Observational Facts 25 2.1 Astronomical Observations 25 2.1.1 Fluxes and Magnitudes 26 2.1.2 Spectroscopy 29 2.1.3 Distance Measurements 32 2.2 Stars 34 2.3 Galaxies 37 2.3.1 The Classification of Galaxies 38 2.3.2 Elliptical Galaxies 41 2.3.3 Disk Galaxies 49 v vi Contents 2.3.4 The Milky Way 55 2.3.5 Dwarf Galaxies 57 2.3.6 Nuclear Star Clusters 59 2.3.7 Starbursts 60 2.3.8 Active Galactic Nuclei 60 2.4 Statistical Properties of the Galaxy Population 61 2.4.1 Luminosity Function 62 2.4.2 Size Distribution 63 2.4.3 Color Distribution 64 2.4.4 The Mass–Metallicity Relation 65 2.4.5 Environment Dependence 65 2.5 Clusters and Groups of Galaxies 67 2.5.1 Clusters of Galaxies 67 2.5.2 Groups of Galaxies 71 2.6 Galaxies at High Redshifts 72 2.6.1 Galaxy Counts 73 2.6.2 Photometric Redshifts 75 2.6.3 Galaxy Redshift Surveys at z ~ 1 75 2.6.4 Lyman-Break Galaxies 77 2.6.5 Lyα Emitters 78 2.6.6 Submillimeter Sources 78 2.6.7 Extremely Red Objects and Distant Red Galaxies 79 2.6.8 The Cosmic Star-Formation History 80 2.7 Large-Scale Structure 81 2.7.1 Two-Point Correlation Functions 82 2.7.2 Probing the Matter Field via Weak Lensing 84 2.8 The Intergalactic Medium 85 2.8.1 The Gunn–Peterson Test 85 2.8.2 Quasar Absorption Line Systems 86 2.9 The Cosmic Microwave Background 89 2.10 The Homogeneous and Isotropic Universe 92 2.10.1 The Determination of Cosmological Parameters 94 2.10.2 The Mass and Energy Content of the Universe 95 3 Cosmological Background 100 3.1 The Cosmological Principle and the Robertson–Walker Metric 102 3.1.1 The Cosmological Principle and its Consequences 102 3.1.2 Robertson–Walker Metric 104 3.1.3 Redshift 106 3.1.4 Peculiar Velocities 107 3.1.5 Thermodynamics and the Equation of State 108 3.1.6 Angular-Diameter and Luminosity Distances 110 3.2 Relativistic Cosmology 112 3.2.1 Friedmann Equation 113 3.2.2 The Densities at the Present Time 114 Contents vii 3.2.3 Explicit Solutions of the Friedmann Equation 115 3.2.4 Horizons 119 3.2.5 The Age of the Universe 119 3.2.6 Cosmological Distances and Volumes 121 3.3 The Production and Survival of Particles 124 3.3.1 The Chronology of the Hot Big Bang 125 3.3.2 Particles in Thermal Equilibrium 127 3.3.3 Entropy 129 3.3.4 Distribution Functions of Decoupled Particle Species 132 3.3.5 The Freeze-Out of Stable Particles 133 3.3.6 Decaying Particles 137 3.4 Primordial Nucleosynthesis 139 3.4.1 Initial Conditions 139 3.4.2 Nuclear Reactions 140 3.4.3 Model Predictions 142 3.4.4 Observational Results 144 3.5 Recombination and Decoupling 146 3.5.1 Recombination 146 3.5.2 Decoupling and the Origin of the CMB 148 3.5.3 Compton Scattering 150 3.5.4 Energy Thermalization 151 3.6 Inflation 152 3.6.1 The Problems of the Standard Model 152 3.6.2 The Concept of Inflation 154 3.6.3 Realization of Inflation 156 3.6.4 Models of Inflation 158 4 Cosmological Perturbations 162 4.1 Newtonian Theory of Small Perturbations 162 4.1.1 Ideal Fluid 162 4.1.2 Isentropic and Isocurvature Initial Conditions 166 4.1.3 Gravitational Instability 166 4.1.4 Collisionless Gas 168 4.1.5 Free-Streaming Damping 171 4.1.6 Specific Solutions 172 4.1.7 Higher-Order Perturbation Theory 176 4.1.8 The Zel’dovich Approximation 177 4.2 Relativistic Theory of Small Perturbations 178 4.2.1 Gauge Freedom 179 4.2.2 Classification of Perturbations 181 4.2.3 Specific Examples of Gauge Choices 183 4.2.4 Basic Equations 185 4.2.5 Coupling between Baryons and Radiation 189 4.2.6 Perturbation Evolution 191 4.3 Linear Transfer Functions 196 4.3.1 Adiabatic Baryon Models 198 viii Contents 4.3.2 Adiabatic Cold Dark Matter Models 200 4.3.3 Adiabatic Hot Dark Matter Models 201 4.3.4 Isocurvature Cold Dark Matter Models 202 4.4 Statistical Properties 202 4.4.1 General Discussion 202 4.4.2 Gaussian Random Fields 204 4.4.3 Simple Non-Gaussian Models 205 4.4.4 Linear Perturbation Spectrum 206 4.5 The Origin of Cosmological Perturbations 209 4.5.1 Perturbations from Inflation 209 4.5.2 Perturbations from Topological Defects 213 5 Gravitational Collapse and Collisionless Dynamics 215 5.1 Spherical Collapse Models 215 5.1.1 Spherical Collapse in a Λ = 0 Universe 215 5.1.2 Spherical Collapse in a Flat Universe with Λ > 0 218 5.1.3 Spherical Collapse with Shell Crossing 219 5.2 Similarity Solutions for Spherical Collapse 220 5.2.1 Models with Radial Orbits 220 5.2.2 Models Including Non-Radial Orbits 224 5.3 Collapse of Homogeneous Ellipsoids 226 5.4 Collisionless Dynamics 230 5.4.1 Time Scales for Collisions 230 5.4.2 Basic Dynamics 232 5.4.3 The Jeans Equations 233 5.4.4 The Virial Theorem 234 5.4.5 Orbit Theory 236 5.4.6 The Jeans Theorem 240 5.4.7 Spherical Equilibrium Models 240 5.4.8 Axisymmetric Equilibrium Models 244 5.4.9 Triaxial Equilibrium Models 247 5.5 Collisionless Relaxation 248 5.5.1 Phase Mixing 249 5.5.2 Chaotic Mixing 250 5.5.3 Violent Relaxation 251 5.5.4 Landau Damping 253 5.5.5 The End State of Relaxation 254 5.6 Gravitational Collapse of the Cosmic Density Field 257 5.6.1 Hierarchical Clustering 257 5.6.2 Results from Numerical Simulations 258 6 Probing the Cosmic Density Field 262 6.1 Large-Scale Mass Distribution 262 6.1.1 Correlation Functions 262 6.1.2 Particle Sampling and Bias 264 6.1.3 Mass Moments 266 Contents ix 6.2 Large-Scale Velocity Field 270 6.2.1 Bulk Motions and Velocity Correlation Functions 270 6.2.2 Mass Density Reconstruction from the Velocity Field 271 6.3 Clustering in Real Space and Redshift Space 273 6.3.1 Redshift Distortions 273 6.3.2 Real-Space Correlation Functions 276 6.4 Clustering Evolution 278 6.4.1 Dynamics of Statistics 278 6.4.2 Self-Similar Gravitational Clustering 280 6.4.3 Development of Non-Gaussian Features 282 6.5 Galaxy Clustering 283 6.5.1 Correlation Analyses 284 6.5.2 Power Spectrum Analysis 288 6.5.3 Angular Correlation Function and Power Spectrum 290 6.6 Gravitational Lensing 292 6.6.1 Basic Equations 292 6.6.2 Lensing by a Point Mass 295 6.6.3 Lensing by an Extended Object 297 6.6.4 Cosmic Shear 300 6.7 Fluctuations in the Cosmic Microwave Background 302 6.7.1 Observational Quantities 302 6.7.2 Theoretical Expectations of Temperature Anisotropy 304 6.7.3 Thomson Scattering and Polarization of the Microwave Background 311 6.7.4 Interaction between CMB Photons and Matter 314 6.7.5 Constraints on Cosmological Parameters 316 7 Formation and Structure of Dark Matter Halos 319 7.1 Density Peaks 321 7.1.1 Peak Number Density 321 7.1.2 Spatial Modulation of the Peak Number Density 323 7.1.3 Correlation Function 324 7.1.4 Shapes of Density Peaks 325 7.2 Halo Mass Function 326 7.2.1 Press–Schechter Formalism 327 7.2.2 Excursion Set Derivation of the Press–Schechter Formula 328 7.2.3 Spherical versus Ellipsoidal Dynamics 331 7.2.4 Tests of the Press–Schechter Formalism 333 7.2.5 Number Density of Galaxy Clusters 334 7.3 Progenitor Distributions and Merger Trees 336 7.3.1 Progenitors of Dark Matter Halos 336 7.3.2 Halo Merger Trees 336 7.3.3 Main Progenitor Histories 339 7.3.4 Halo Assembly and Formation Times 340 7.3.5 Halo Merger Rates 342 7.3.6 Halo Survival Times 343 x Contents 7.4 Spatial Clustering and Bias 345 7.4.1 Linear Bias and Correlation Function 345 7.4.2 Assembly Bias 348 7.4.3 Nonlinear and Stochastic Bias 348 7.5 Internal Structure of Dark Matter Halos 351 7.5.1 Halo Density Profiles 351 7.5.2 Halo Shapes 354 7.5.3 Halo Substructure 355 7.5.4 Angular Momentum 358 7.6 The Halo Model of Dark Matter Clustering 362 8 Formation and Evolution of Gaseous Halos 366 8.1 Basic Fluid Dynamics and Radiative Processes 366 8.1.1 Basic Equations 366 8.1.2 Compton Cooling 367 8.1.3 Radiative Cooling 367 8.1.4 Photoionization Heating 369 8.2 Hydrostatic Equilibrium 371 8.2.1 Gas Density Profile 371 8.2.2 Convective Instability 373 8.2.3 Virial Theorem Applied to a Gaseous Halo 374 8.3 The Formation of Hot Gaseous Halos 376 8.3.1 Accretion Shocks 376 8.3.2 Self-Similar Collapse of Collisional Gas 379 8.3.3 The Impact of a Collisionless Component 383 8.3.4 More General Models of Spherical Collapse 384 8.4 Radiative Cooling in Gaseous Halos 385 8.4.1 Radiative Cooling Time Scales for Uniform Clouds 385 8.4.2 Evolution of the Cooling Radius 387 8.4.3 Self-Similar Cooling Waves 388 8.4.4 Spherical Collapse with Cooling 390 8.5 Thermal and Hydrodynamical Instabilities of Cooling Gas 393 8.5.1 Thermal Instability 393 8.5.2 Hydrodynamical Instabilities 396 8.5.3 Heat Conduction 397 8.6 Evolution of Gaseous Halos with Energy Sources 398 8.6.1 Blast Waves 399 8.6.2 Winds and Wind-Driven Bubbles 404 8.6.3 Supernova Feedback and Galaxy Formation 406 8.7 Results from Numerical Simulations 408 8.7.1 Three-Dimensional Collapse without Radiative Cooling 408 8.7.2 Three-Dimensional Collapse with Radiative Cooling 409 Contents xi 8.8 Observational Tests 410 8.8.1 X-ray Clusters and Groups 410 8.8.2 Gaseous Halos around Elliptical Galaxies 414 8.8.3 Gaseous Halos around Spiral Galaxies 416 9 Star Formation in Galaxies 417 9.1 Giant Molecular Clouds: The Sites of Star Formation 418 9.1.1 Observed Properties 418 9.1.2 Dynamical State 419 9.2 The Formation of Giant Molecular Clouds 421 9.2.1 The Formation of Molecular Hydrogen 421 9.2.2 Cloud Formation 422 9.3 What Controls the Star-Formation Efficiency 425 9.3.1 Magnetic Fields 425 9.3.2 Supersonic Turbulence 426 9.3.3 Self-Regulation 428 9.4 The Formation of Individual Stars 429 9.4.1 The Formation of Low-Mass Stars 429 9.4.2 The Formation of Massive Stars 432 9.5 Empirical Star-Formation Laws 433 9.5.1 The Kennicutt–Schmidt Law 434 9.5.2 Local Star-Formation Laws 436 9.5.3 Star-Formation Thresholds 438 9.6 The Initial Mass Function 440 9.6.1 Observational Constraints 441 9.6.2 Theoretical Models 443 9.7 The Formation of Population III Stars 446 10 Stellar Populations and Chemical Evolution 449 10.1 The Basic Concepts of Stellar Evolution 449 10.1.1 Basic Equations of Stellar Structure 450 10.1.2 Stellar Evolution 453 10.1.3 Equation of State, Opacity, and Energy Production 453 10.1.4 Scaling Relations 460 10.1.5 Main-Sequence Lifetimes 462 10.2 Stellar Evolutionary Tracks 463 10.2.1 Pre-Main-Sequence Evolution 463 10.2.2 Post-Main-Sequence Evolution 464 10.2.3 Supernova Progenitors and Rates 468 10.3 Stellar Population Synthesis 470 10.3.1 Stellar Spectra 470 10.3.2 Spectral Synthesis 471 10.3.3 Passive Evolution 472 10.3.4 Spectral Features 474 10.3.5 Age–Metallicity Degeneracy 475 xii Contents 10.3.6 K and E Corrections 475 10.3.7 Emission and Absorption by the Interstellar Medium 476 10.3.8 Star-Formation Diagnostics 482 10.3.9 Estimating Stellar Masses and Star-Formation Histories of Galaxies 484 10.4 Chemical Evolution of Galaxies 486 10.4.1 Stellar Chemical Production 486 10.4.2 The Closed-Box Model 488 10.4.3 Models with Inflow and Outflow 490 10.4.4 Abundance Ratios 491 10.5 Stellar Energetic Feedback 492 10.5.1 Mass-Loaded Kinetic Energy from Stars 492 10.5.2 Gas Dynamics Including Stellar Feedback 493 11 Disk Galaxies 495 11.1 Mass Components and Angular Momentum 495 11.1.1 Disk Models 496 11.1.2 Rotation Curves 498 11.1.3 Adiabatic Contraction 501 11.1.4 Disk Angular Momentum 502 11.1.5 Orbits in Disk Galaxies 503 11.2 The Formation of Disk Galaxies 505 11.2.1 General Discussion 505 11.2.2 Non-Self-Gravitating Disks in Isothermal Spheres 505 11.2.3 Self-Gravitating Disks in Halos with Realistic Profiles 507 11.2.4 Including a Bulge Component 509 11.2.5 Disk Assembly 509 11.2.6 Numerical Simulations of Disk Formation 511 11.3 The Origin of Disk Galaxy Scaling Relations 512 11.4 The Origin of Exponential Disks 515 11.4.1 Disks from Relic Angular Momentum Distribution 515 11.4.2 Viscous Disks 517 11.4.3 The Vertical Structure of Disk Galaxies 518 11.5 Disk Instabilities 521 11.5.1 Basic Equations 521 11.5.2 Local Instability 523 11.5.3 Global Instability 525 11.5.4 Secular Evolution 528 11.6 The Formation of Spiral Arms 531 11.7 Stellar Population Properties 534 11.7.1 Global Trends 535 11.7.2 Color Gradients 537 11.8 Chemical Evolution of Disk Galaxies 538 11.8.1 The Solar Neighborhood 538 11.8.2 Global Relations 540 Contents xiii 12 Galaxy Interactions and Transformations 544 12.1 High-Speed Encounters 545 12.2 Tidal Stripping 548 12.2.1 Tidal Radius 548 12.2.2 Tidal Streams and Tails 549 12.3 Dynamical Friction 553 12.3.1 Orbital Decay 556 12.3.2 The Validity of Chandrasekhar’s Formula 559 12.4 Galaxy Merging 561 12.4.1 Criterion for Mergers 561 12.4.2 Merger Demographics 563 12.4.3 The Connection between Mergers, Starbursts and AGN 564 12.4.4 Minor Mergers and Disk Heating 565 12.5 Transformation of Galaxies in Clusters 568 12.5.1 Galaxy Harassment 569 12.5.2 Galactic Cannibalism 570 12.5.3 Ram-Pressure Stripping 571 12.5.4 Strangulation 572 13 Elliptical Galaxies 574 13.1 Structure and Dynamics 574 13.1.1 Observables 575 13.1.2 Photometric Properties 576 13.1.3 Kinematic Properties 577 13.1.4 Dynamical Modeling 579 13.1.5 Evidence for Dark Halos 581 13.1.6 Evidence for Supermassive Black Holes 582 13.1.7 Shapes 584 13.2 The Formation of Elliptical Galaxies 587 13.2.1 The Monolithic Collapse Scenario 588 13.2.2 The Merger Scenario 590 13.2.3 Hierarchical Merging and the Elliptical Population 593 13.3 Observational Tests and Constraints 594 13.3.1 Evolution of the Number Density of Ellipticals 594 13.3.2 The Sizes of Elliptical Galaxies 595 13.3.3 Phase-Space Density Constraints 598 13.3.4 The Specific Frequency of Globular Clusters 599 13.3.5 Merging Signatures 600 13.3.6 Merger Rates 601 13.4 The Fundamental Plane of Elliptical Galaxies 602 13.4.1 The Fundamental Plane in the Merger Scenario 604 13.4.2 Projections and Rotations of the Fundamental Plane 604 13.5 Stellar Population Properties 606 13.5.1 Archaeological Records 606 13.5.2 Evolutionary Probes 609 xiv Contents 13.5.3 Color and Metallicity Gradients 610 13.5.4 Implications for the Formation of Elliptical Galaxies 610 13.6 Bulges, Dwarf Ellipticals and Dwarf Spheroidals 613 13.6.1 The Formation of Galactic Bulges 614 13.6.2 The Formation of Dwarf Ellipticals 616 14 Active Galaxies 618 14.1 The Population of Active Galactic Nuclei 619 14.2 The Supermassive Black Hole Paradigm 623 14.2.1 The Central Engine 623 14.2.2 Accretion Disks 624 14.2.3 Continuum Emission 626 14.2.4 Emission Lines 631 14.2.5 Jets, Superluminal Motion and Beaming 633 14.2.6 Emission-Line Regions and Obscuring Torus 637 14.2.7 The Idea of Unification 638 14.2.8 Observational Tests for Supermassive Black Holes 639 14.3 The Formation and Evolution of AGN 640 14.3.1 The Growth of Supermassive Black Holes and the Fueling of AGN 640 14.3.2 AGN Demographics 644 14.3.3 Outstanding Questions 647 14.4 AGN and Galaxy Formation 648 14.4.1 Radiative Feedback 649 14.4.2 Mechanical Feedback 650 15 Statistical Properties of the Galaxy Population 652 15.1 Preamble 652 15.2 Galaxy Luminosities and Stellar Masses 654 15.2.1 Galaxy Luminosity Functions 654 15.2.2 Galaxy Counts 658 15.2.3 Extragalactic Background Light 660 15.3 Linking Halo Mass to Galaxy Luminosity 663 15.3.1 Simple Considerations 663 15.3.2 The Luminosity Function of Central Galaxies 665 15.3.3 The Luminosity Function of Satellite Galaxies 666 15.3.4 Satellite Fractions 668 15.3.5 Discussion 669 15.4 Linking Halo Mass to Star-Formation History 670 15.4.1 The Color Distribution of Galaxies 670 15.4.2 Origin of the Cosmic Star-Formation History 673 15.5 Environmental Dependence 674 15.5.1 Effects within Dark Matter Halos 675 15.5.2 Effects on Large Scales 677 15.6 Spatial Clustering and Galaxy Bias 679 15.6.1 Application to High-Redshift Galaxies 683 Contents xv 15.7 Putting it All Together 684 15.7.1 Semi-Analytical Models 684 15.7.2 Hydrodynamical Simulations 686 16 The Intergalactic Medium 689 16.1 The Ionization State of the Intergalactic Medium 690 16.1.1 Physical Conditions after Recombination 690 16.1.2 The Mean Optical Depth of the IGM 690 16.1.3 The Gunn–Peterson Test 692 16.1.4 Constraints from the Cosmic Microwave Background 694 16.2 Ionizing Sources 695 16.2.1 Photoionization versus Collisional Ionization 695 16.2.2 Emissivity from Quasars and Young Galaxies 697 16.2.3 Attenuation by Intervening Absorbers 699 16.2.4 Observational Constraints on the UV Background 701 16.3 The Evolution of the Intergalactic Medium 702 16.3.1 Thermal Evolution 702 16.3.2 Ionization Evolution 704 16.3.3 The Epoch of Re-ionization 705 16.3.4 Probing Re-ionization with 21-cm Emission and Absorption 707 16.4 General Properties of Absorption Lines 709 16.4.1 Distribution Function 709 16.4.2 Thermal Broadening 710 16.4.3 Natural Broadening and Voigt Profiles 711 16.4.4 Equivalent Width and Column Density 712 16.4.5 Common QSO Absorption Line Systems 714 16.4.6 Photoionization Models 714 16.5 The Lyman α Forest 714 16.5.1 Redshift Evolution 715 16.5.2 Column Density Distribution 716 16.5.3 Doppler Parameter 717 16.5.4 Sizes of Absorbers 718 16.5.5 Metallicity 719 16.5.6 Clustering 720 16.5.7 Lyman α Forests at Low Redshift 721 16.5.8 The Helium Lyman α Forest 722 16.6 Models of the Lyman α Forest 723 16.6.1 Early Models 723 16.6.2 Lyman α Forest in Hierarchical Models 724 16.6.3 Lyman α Forest in Hydrodynamical Simulations 731 16.7 Lyman-Limit Systems 732 16.8 Damped Lyman α Systems 733 16.8.1 Column Density Distribution 734 16.8.2 Redshift Evolution 734 16.8.3 Metallicities 736 16.8.4 Kinematics 738 xvi Contents 16.9 Metal Absorption Line Systems 738 16.9.1 MgII Systems 739 16.9.2 CIV and OVI Systems 740 A Basics of General Relativity 741 A1.1 Space-time Geometry 741 A1.2 The Equivalence Principle 743 A1.3 Geodesic Equations 744 A1.4 Energy–Momentum Tensor 746 A1.5 Newtonian Limit 747 A1.6 Einstein’s Field Equation 747 B Gas and Radiative Processes 748 B1.1 Ideal Gas 748 B1.2 Basic Equations 749 B1.3 Radiative Processes 751 B1.3.1 Einstein Coefficients and Milne Relation 752 B1.3.2 Photoionization and Photo-excitation 755 B1.3.3 Recombination 756 B1.3.4 Collisional Ionization and Collisional Excitation 757 B1.3.5 Bremsstrahlung 758 B1.3.6 Compton Scattering 759 B1.4 Radiative Cooling 760 C Numerical Simulations 764 C1.1 N-Body Simulations 764 C1.1.1 Force Calculations 766 C1.1.2 Issues Related to Numerical Accuracy 767 C1.1.3 Boundary Conditions 769 C1.1.4 Initial Conditions 769 C1.2 Hydrodynamical Simulations 770 C1.2.1 Smoothed-Particle Hydrodynamics (SPH) 770 C1.2.2 Grid-Based Algorithms 772 D Frequently Used Abbreviations 775 E Useful Numbers 776 References 777 Index |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Galaxy_Formation_and_Evolution_(Cambridge_2010).pdf
2015-01-29 10:45:07, 12.11 M
» 收录本帖的淘帖专辑推荐
经典资源帖 | 自然科学 |
» 猜你喜欢
实验室接单子
已经有4人回复
全日制(定向)博士
已经有4人回复
假如你的研究生提出不合理要求
已经有6人回复
对氯苯硼酸纯化
已经有3人回复
求助:我三月中下旬出站,青基依托单位怎么办?
已经有12人回复
不自信的我
已经有12人回复
所感
已经有4人回复
要不要辞职读博?
已经有7人回复
北核录用
已经有3人回复
26申博(荧光探针方向,有机合成)
已经有4人回复
» 本主题相关价值贴推荐,对您同样有帮助:
19楼2016-10-14 09:25:26
26楼2017-10-25 12:48:09
33楼2019-05-22 21:18:04
简单回复
2015-01-29 14:31
回复
五星好评 顶一下,感谢分享!
phykid3楼
2015-02-01 02:52
回复
五星好评 顶一下,感谢分享!
bobrock4楼
2015-02-01 05:51
回复
五星好评 顶一下,感谢分享!
ha16685楼
2015-02-01 17:27
回复
五星好评 顶一下,感谢分享!
2015-02-06 23:05
回复
五星好评 顶一下,感谢分享!
kuangpan7楼
2015-02-17 16:04
回复
五星好评 顶一下,感谢分享!
2015-03-28 14:54
回复
五星好评 顶一下,感谢分享!
2015-04-10 22:07
回复
五星好评 顶一下,感谢分享!
jjnie10楼
2015-04-12 14:32
回复
五星好评 顶一下,感谢分享!
114088518311楼
2015-05-22 10:47
回复
五星好评 顶一下,感谢分享!
mechtest12楼
2015-05-22 14:08
回复
五星好评 顶一下,感谢分享!
supervisher13楼
2015-06-09 15:51
回复
五星好评 顶一下,感谢分享!
wslaoluo14楼
2015-10-11 15:59
回复
五星好评 顶一下,感谢分享!
巴西雨林的猫15楼
2015-11-03 21:05
回复
五星好评 顶一下,感谢分享!
jfmamj16楼
2015-12-11 16:06
回复
五星好评 顶一下,感谢分享!
gxw021817楼
2015-12-19 22:06
回复
五星好评 顶一下,感谢分享!
pcliu_018楼
2016-08-14 17:04
回复
五星好评 顶一下,感谢分享!
lekf12320楼
2016-12-06 14:50
回复
五星好评 顶一下,感谢分享!
雷神之锤11121楼
2016-12-17 17:59
回复
五星好评 顶一下,感谢分享!
universpider22楼
2017-02-28 12:02
回复
五星好评 顶一下,感谢分享!
liuwei874723楼
2017-03-28 19:42
回复
三星好评 顶一下,感谢分享!
gxsun24楼
2017-10-20 15:33
回复
五星好评 顶一下,感谢分享!
guhe25楼
2017-10-21 12:31
回复
五星好评 顶一下,感谢分享!
fortran_1927楼
2017-10-25 14:04
回复
五星好评 顶一下,感谢分享!
nmns28楼
2017-11-06 11:11
回复
五星好评 顶一下,感谢分享!
狂想风暴29楼
2017-12-22 14:51
回复
五星好评 顶一下,感谢分享!
jpqrest30楼
2018-03-01 15:52
回复
五星好评 顶一下,感谢分享!
cosmos_fang31楼
2018-05-21 22:05
回复
五星好评 顶一下,感谢分享!
xjvoooo32楼
2019-04-17 06:31
回复
五星好评 顶一下,感谢分享!
shangren550434楼
2019-07-03 17:40
回复
五星好评 顶一下,感谢分享!
zyb1313235楼
2019-07-13 11:48
回复
五星好评 顶一下,感谢分享!
steelish36楼
2019-08-04 12:43
回复
五星好评 顶一下,感谢分享!












回复此楼