24小时热门版块排行榜    

查看: 2731  |  回复: 35
【奖励】 本帖被评价34次,作者pkusiyuan增加金币 27

pkusiyuan

银虫 (正式写手)


[资源] 剑桥2010年英文原版Galaxy Formation and Evolution

The rapidly expanding field of galaxy formation lies at the interfaces of astronomy, particle
physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed
to understand how galaxies form and evolve, this book is ideal for researchers entering the field.
Individual chapters explore the evolution of the Universe as a whole and its particle and radiation
content; linear and nonlinear growth of cosmic structures; processes affecting the gaseous
and dark matter components of galaxies and their stellar populations; the formation of spiral and
elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy
interactions; and the intergalactic medium.
Emphasizing both observational and theoretical aspects, this book provides a coherent introduction
for astronomers, cosmologists, and astroparticle physicists to the broad range of science
underlying the formation and evolution of galaxies.
HOUJUN MO is Professor of Astrophysics at the University of Massachusetts. He is known for
his work on the formation and clustering of galaxies and their dark matter halos.
FRANK VAN DEN BOSCH is Assistant Professor at Yale University, and is known for his
studies of the formation, dynamics, and clustering of galaxies.
SIMON WHITE is Director at the Max Planck Institute for Astrophysics in Garching. He is
one of the originators of the modern theory of galaxy formation and has received numerous
international prizes and honors.
Jointly and separately the authors have published almost 500 papers in the refereed professional
literature, most of them on topics related to the subject of this book.
1 Introduction 1
1.1 The Diversity of the Galaxy Population 2
1.2 Basic Elements of Galaxy Formation 5
1.2.1 The Standard Model of Cosmology 6
1.2.2 Initial Conditions 6
1.2.3 Gravitational Instability and Structure Formation 7
1.2.4 Gas Cooling 8
1.2.5 Star Formation 8
1.2.6 Feedback Processes 9
1.2.7 Mergers 10
1.2.8 Dynamical Evolution 12
1.2.9 Chemical Evolution 12
1.2.10 Stellar Population Synthesis 13
1.2.11 The Intergalactic Medium 13
1.3 Time Scales 14
1.4 A Brief History of Galaxy Formation 15
1.4.1 Galaxies as Extragalactic Objects 15
1.4.2 Cosmology 16
1.4.3 Structure Formation 18
1.4.4 The Emergence of the Cold Dark Matter Paradigm 20
1.4.5 Galaxy Formation 22
2 Observational Facts 25
2.1 Astronomical Observations 25
2.1.1 Fluxes and Magnitudes 26
2.1.2 Spectroscopy 29
2.1.3 Distance Measurements 32
2.2 Stars 34
2.3 Galaxies 37
2.3.1 The Classification of Galaxies 38
2.3.2 Elliptical Galaxies 41
2.3.3 Disk Galaxies 49
v
vi Contents
2.3.4 The Milky Way 55
2.3.5 Dwarf Galaxies 57
2.3.6 Nuclear Star Clusters 59
2.3.7 Starbursts 60
2.3.8 Active Galactic Nuclei 60
2.4 Statistical Properties of the Galaxy Population 61
2.4.1 Luminosity Function 62
2.4.2 Size Distribution 63
2.4.3 Color Distribution 64
2.4.4 The Mass–Metallicity Relation 65
2.4.5 Environment Dependence 65
2.5 Clusters and Groups of Galaxies 67
2.5.1 Clusters of Galaxies 67
2.5.2 Groups of Galaxies 71
2.6 Galaxies at High Redshifts 72
2.6.1 Galaxy Counts 73
2.6.2 Photometric Redshifts 75
2.6.3 Galaxy Redshift Surveys at z ~ 1 75
2.6.4 Lyman-Break Galaxies 77
2.6.5 Lyα Emitters 78
2.6.6 Submillimeter Sources 78
2.6.7 Extremely Red Objects and Distant Red Galaxies 79
2.6.8 The Cosmic Star-Formation History 80
2.7 Large-Scale Structure 81
2.7.1 Two-Point Correlation Functions 82
2.7.2 Probing the Matter Field via Weak Lensing 84
2.8 The Intergalactic Medium 85
2.8.1 The Gunn–Peterson Test 85
2.8.2 Quasar Absorption Line Systems 86
2.9 The Cosmic Microwave Background 89
2.10 The Homogeneous and Isotropic Universe 92
2.10.1 The Determination of Cosmological Parameters 94
2.10.2 The Mass and Energy Content of the Universe 95
3 Cosmological Background 100
3.1 The Cosmological Principle and the Robertson–Walker Metric 102
3.1.1 The Cosmological Principle and its Consequences 102
3.1.2 Robertson–Walker Metric 104
3.1.3 Redshift 106
3.1.4 Peculiar Velocities 107
3.1.5 Thermodynamics and the Equation of State 108
3.1.6 Angular-Diameter and Luminosity Distances 110
3.2 Relativistic Cosmology 112
3.2.1 Friedmann Equation 113
3.2.2 The Densities at the Present Time 114
Contents vii
3.2.3 Explicit Solutions of the Friedmann Equation 115
3.2.4 Horizons 119
3.2.5 The Age of the Universe 119
3.2.6 Cosmological Distances and Volumes 121
3.3 The Production and Survival of Particles 124
3.3.1 The Chronology of the Hot Big Bang 125
3.3.2 Particles in Thermal Equilibrium 127
3.3.3 Entropy 129
3.3.4 Distribution Functions of Decoupled Particle Species 132
3.3.5 The Freeze-Out of Stable Particles 133
3.3.6 Decaying Particles 137
3.4 Primordial Nucleosynthesis 139
3.4.1 Initial Conditions 139
3.4.2 Nuclear Reactions 140
3.4.3 Model Predictions 142
3.4.4 Observational Results 144
3.5 Recombination and Decoupling 146
3.5.1 Recombination 146
3.5.2 Decoupling and the Origin of the CMB 148
3.5.3 Compton Scattering 150
3.5.4 Energy Thermalization 151
3.6 Inflation 152
3.6.1 The Problems of the Standard Model 152
3.6.2 The Concept of Inflation 154
3.6.3 Realization of Inflation 156
3.6.4 Models of Inflation 158
4 Cosmological Perturbations 162
4.1 Newtonian Theory of Small Perturbations 162
4.1.1 Ideal Fluid 162
4.1.2 Isentropic and Isocurvature Initial Conditions 166
4.1.3 Gravitational Instability 166
4.1.4 Collisionless Gas 168
4.1.5 Free-Streaming Damping 171
4.1.6 Specific Solutions 172
4.1.7 Higher-Order Perturbation Theory 176
4.1.8 The Zel’dovich Approximation 177
4.2 Relativistic Theory of Small Perturbations 178
4.2.1 Gauge Freedom 179
4.2.2 Classification of Perturbations 181
4.2.3 Specific Examples of Gauge Choices 183
4.2.4 Basic Equations 185
4.2.5 Coupling between Baryons and Radiation 189
4.2.6 Perturbation Evolution 191
4.3 Linear Transfer Functions 196
4.3.1 Adiabatic Baryon Models 198
viii Contents
4.3.2 Adiabatic Cold Dark Matter Models 200
4.3.3 Adiabatic Hot Dark Matter Models 201
4.3.4 Isocurvature Cold Dark Matter Models 202
4.4 Statistical Properties 202
4.4.1 General Discussion 202
4.4.2 Gaussian Random Fields 204
4.4.3 Simple Non-Gaussian Models 205
4.4.4 Linear Perturbation Spectrum 206
4.5 The Origin of Cosmological Perturbations 209
4.5.1 Perturbations from Inflation 209
4.5.2 Perturbations from Topological Defects 213
5 Gravitational Collapse and Collisionless Dynamics 215
5.1 Spherical Collapse Models 215
5.1.1 Spherical Collapse in a Λ = 0 Universe 215
5.1.2 Spherical Collapse in a Flat Universe with Λ > 0 218
5.1.3 Spherical Collapse with Shell Crossing 219
5.2 Similarity Solutions for Spherical Collapse 220
5.2.1 Models with Radial Orbits 220
5.2.2 Models Including Non-Radial Orbits 224
5.3 Collapse of Homogeneous Ellipsoids 226
5.4 Collisionless Dynamics 230
5.4.1 Time Scales for Collisions 230
5.4.2 Basic Dynamics 232
5.4.3 The Jeans Equations 233
5.4.4 The Virial Theorem 234
5.4.5 Orbit Theory 236
5.4.6 The Jeans Theorem 240
5.4.7 Spherical Equilibrium Models 240
5.4.8 Axisymmetric Equilibrium Models 244
5.4.9 Triaxial Equilibrium Models 247
5.5 Collisionless Relaxation 248
5.5.1 Phase Mixing 249
5.5.2 Chaotic Mixing 250
5.5.3 Violent Relaxation 251
5.5.4 Landau Damping 253
5.5.5 The End State of Relaxation 254
5.6 Gravitational Collapse of the Cosmic Density Field 257
5.6.1 Hierarchical Clustering 257
5.6.2 Results from Numerical Simulations 258
6 Probing the Cosmic Density Field 262
6.1 Large-Scale Mass Distribution 262
6.1.1 Correlation Functions 262
6.1.2 Particle Sampling and Bias 264
6.1.3 Mass Moments 266
Contents ix
6.2 Large-Scale Velocity Field 270
6.2.1 Bulk Motions and Velocity Correlation Functions 270
6.2.2 Mass Density Reconstruction from the Velocity Field 271
6.3 Clustering in Real Space and Redshift Space 273
6.3.1 Redshift Distortions 273
6.3.2 Real-Space Correlation Functions 276
6.4 Clustering Evolution 278
6.4.1 Dynamics of Statistics 278
6.4.2 Self-Similar Gravitational Clustering 280
6.4.3 Development of Non-Gaussian Features 282
6.5 Galaxy Clustering 283
6.5.1 Correlation Analyses 284
6.5.2 Power Spectrum Analysis 288
6.5.3 Angular Correlation Function and Power Spectrum 290
6.6 Gravitational Lensing 292
6.6.1 Basic Equations 292
6.6.2 Lensing by a Point Mass 295
6.6.3 Lensing by an Extended Object 297
6.6.4 Cosmic Shear 300
6.7 Fluctuations in the Cosmic Microwave Background 302
6.7.1 Observational Quantities 302
6.7.2 Theoretical Expectations of Temperature Anisotropy 304
6.7.3 Thomson Scattering and Polarization of the Microwave Background 311
6.7.4 Interaction between CMB Photons and Matter 314
6.7.5 Constraints on Cosmological Parameters 316
7 Formation and Structure of Dark Matter Halos 319
7.1 Density Peaks 321
7.1.1 Peak Number Density 321
7.1.2 Spatial Modulation of the Peak Number Density 323
7.1.3 Correlation Function 324
7.1.4 Shapes of Density Peaks 325
7.2 Halo Mass Function 326
7.2.1 Press–Schechter Formalism 327
7.2.2 Excursion Set Derivation of the Press–Schechter Formula 328
7.2.3 Spherical versus Ellipsoidal Dynamics 331
7.2.4 Tests of the Press–Schechter Formalism 333
7.2.5 Number Density of Galaxy Clusters 334
7.3 Progenitor Distributions and Merger Trees 336
7.3.1 Progenitors of Dark Matter Halos 336
7.3.2 Halo Merger Trees 336
7.3.3 Main Progenitor Histories 339
7.3.4 Halo Assembly and Formation Times 340
7.3.5 Halo Merger Rates 342
7.3.6 Halo Survival Times 343
x Contents
7.4 Spatial Clustering and Bias 345
7.4.1 Linear Bias and Correlation Function 345
7.4.2 Assembly Bias 348
7.4.3 Nonlinear and Stochastic Bias 348
7.5 Internal Structure of Dark Matter Halos 351
7.5.1 Halo Density Profiles 351
7.5.2 Halo Shapes 354
7.5.3 Halo Substructure 355
7.5.4 Angular Momentum 358
7.6 The Halo Model of Dark Matter Clustering 362
8 Formation and Evolution of Gaseous Halos 366
8.1 Basic Fluid Dynamics and Radiative Processes 366
8.1.1 Basic Equations 366
8.1.2 Compton Cooling 367
8.1.3 Radiative Cooling 367
8.1.4 Photoionization Heating 369
8.2 Hydrostatic Equilibrium 371
8.2.1 Gas Density Profile 371
8.2.2 Convective Instability 373
8.2.3 Virial Theorem Applied to a Gaseous Halo 374
8.3 The Formation of Hot Gaseous Halos 376
8.3.1 Accretion Shocks 376
8.3.2 Self-Similar Collapse of Collisional Gas 379
8.3.3 The Impact of a Collisionless Component 383
8.3.4 More General Models of Spherical Collapse 384
8.4 Radiative Cooling in Gaseous Halos 385
8.4.1 Radiative Cooling Time Scales for Uniform
Clouds 385
8.4.2 Evolution of the Cooling Radius 387
8.4.3 Self-Similar Cooling Waves 388
8.4.4 Spherical Collapse with Cooling 390
8.5 Thermal and Hydrodynamical Instabilities of Cooling Gas 393
8.5.1 Thermal Instability 393
8.5.2 Hydrodynamical Instabilities 396
8.5.3 Heat Conduction 397
8.6 Evolution of Gaseous Halos with Energy Sources 398
8.6.1 Blast Waves 399
8.6.2 Winds and Wind-Driven Bubbles 404
8.6.3 Supernova Feedback and Galaxy Formation 406
8.7 Results from Numerical Simulations 408
8.7.1 Three-Dimensional Collapse without Radiative
Cooling 408
8.7.2 Three-Dimensional Collapse with Radiative
Cooling 409
Contents xi
8.8 Observational Tests 410
8.8.1 X-ray Clusters and Groups 410
8.8.2 Gaseous Halos around Elliptical Galaxies 414
8.8.3 Gaseous Halos around Spiral Galaxies 416
9 Star Formation in Galaxies 417
9.1 Giant Molecular Clouds: The Sites of Star Formation 418
9.1.1 Observed Properties 418
9.1.2 Dynamical State 419
9.2 The Formation of Giant Molecular Clouds 421
9.2.1 The Formation of Molecular Hydrogen 421
9.2.2 Cloud Formation 422
9.3 What Controls the Star-Formation Efficiency 425
9.3.1 Magnetic Fields 425
9.3.2 Supersonic Turbulence 426
9.3.3 Self-Regulation 428
9.4 The Formation of Individual Stars 429
9.4.1 The Formation of Low-Mass Stars 429
9.4.2 The Formation of Massive Stars 432
9.5 Empirical Star-Formation Laws 433
9.5.1 The Kennicutt–Schmidt Law 434
9.5.2 Local Star-Formation Laws 436
9.5.3 Star-Formation Thresholds 438
9.6 The Initial Mass Function 440
9.6.1 Observational Constraints 441
9.6.2 Theoretical Models 443
9.7 The Formation of Population III Stars 446
10 Stellar Populations and Chemical Evolution 449
10.1 The Basic Concepts of Stellar Evolution 449
10.1.1 Basic Equations of Stellar Structure 450
10.1.2 Stellar Evolution 453
10.1.3 Equation of State, Opacity, and Energy Production 453
10.1.4 Scaling Relations 460
10.1.5 Main-Sequence Lifetimes 462
10.2 Stellar Evolutionary Tracks 463
10.2.1 Pre-Main-Sequence Evolution 463
10.2.2 Post-Main-Sequence Evolution 464
10.2.3 Supernova Progenitors and Rates 468
10.3 Stellar Population Synthesis 470
10.3.1 Stellar Spectra 470
10.3.2 Spectral Synthesis 471
10.3.3 Passive Evolution 472
10.3.4 Spectral Features 474
10.3.5 Age–Metallicity Degeneracy 475
xii Contents
10.3.6 K and E Corrections 475
10.3.7 Emission and Absorption by the Interstellar Medium 476
10.3.8 Star-Formation Diagnostics 482
10.3.9 Estimating Stellar Masses and Star-Formation Histories of Galaxies 484
10.4 Chemical Evolution of Galaxies 486
10.4.1 Stellar Chemical Production 486
10.4.2 The Closed-Box Model 488
10.4.3 Models with Inflow and Outflow 490
10.4.4 Abundance Ratios 491
10.5 Stellar Energetic Feedback 492
10.5.1 Mass-Loaded Kinetic Energy from Stars 492
10.5.2 Gas Dynamics Including Stellar Feedback 493
11 Disk Galaxies 495
11.1 Mass Components and Angular Momentum 495
11.1.1 Disk Models 496
11.1.2 Rotation Curves 498
11.1.3 Adiabatic Contraction 501
11.1.4 Disk Angular Momentum 502
11.1.5 Orbits in Disk Galaxies 503
11.2 The Formation of Disk Galaxies 505
11.2.1 General Discussion 505
11.2.2 Non-Self-Gravitating Disks in Isothermal Spheres 505
11.2.3 Self-Gravitating Disks in Halos with Realistic Profiles 507
11.2.4 Including a Bulge Component 509
11.2.5 Disk Assembly 509
11.2.6 Numerical Simulations of Disk Formation 511
11.3 The Origin of Disk Galaxy Scaling Relations 512
11.4 The Origin of Exponential Disks 515
11.4.1 Disks from Relic Angular Momentum Distribution 515
11.4.2 Viscous Disks 517
11.4.3 The Vertical Structure of Disk Galaxies 518
11.5 Disk Instabilities 521
11.5.1 Basic Equations 521
11.5.2 Local Instability 523
11.5.3 Global Instability 525
11.5.4 Secular Evolution 528
11.6 The Formation of Spiral Arms 531
11.7 Stellar Population Properties 534
11.7.1 Global Trends 535
11.7.2 Color Gradients 537
11.8 Chemical Evolution of Disk Galaxies 538
11.8.1 The Solar Neighborhood 538
11.8.2 Global Relations 540
Contents xiii
12 Galaxy Interactions and Transformations 544
12.1 High-Speed Encounters 545
12.2 Tidal Stripping 548
12.2.1 Tidal Radius 548
12.2.2 Tidal Streams and Tails 549
12.3 Dynamical Friction 553
12.3.1 Orbital Decay 556
12.3.2 The Validity of Chandrasekhar’s Formula 559
12.4 Galaxy Merging 561
12.4.1 Criterion for Mergers 561
12.4.2 Merger Demographics 563
12.4.3 The Connection between Mergers, Starbursts and AGN 564
12.4.4 Minor Mergers and Disk Heating 565
12.5 Transformation of Galaxies in Clusters 568
12.5.1 Galaxy Harassment 569
12.5.2 Galactic Cannibalism 570
12.5.3 Ram-Pressure Stripping 571
12.5.4 Strangulation 572
13 Elliptical Galaxies 574
13.1 Structure and Dynamics 574
13.1.1 Observables 575
13.1.2 Photometric Properties 576
13.1.3 Kinematic Properties 577
13.1.4 Dynamical Modeling 579
13.1.5 Evidence for Dark Halos 581
13.1.6 Evidence for Supermassive Black Holes 582
13.1.7 Shapes 584
13.2 The Formation of Elliptical Galaxies 587
13.2.1 The Monolithic Collapse Scenario 588
13.2.2 The Merger Scenario 590
13.2.3 Hierarchical Merging and the Elliptical Population 593
13.3 Observational Tests and Constraints 594
13.3.1 Evolution of the Number Density of Ellipticals 594
13.3.2 The Sizes of Elliptical Galaxies 595
13.3.3 Phase-Space Density Constraints 598
13.3.4 The Specific Frequency of Globular Clusters 599
13.3.5 Merging Signatures 600
13.3.6 Merger Rates 601
13.4 The Fundamental Plane of Elliptical Galaxies 602
13.4.1 The Fundamental Plane in the Merger Scenario 604
13.4.2 Projections and Rotations of the Fundamental Plane 604
13.5 Stellar Population Properties 606
13.5.1 Archaeological Records 606
13.5.2 Evolutionary Probes 609
xiv Contents
13.5.3 Color and Metallicity Gradients 610
13.5.4 Implications for the Formation of Elliptical Galaxies 610
13.6 Bulges, Dwarf Ellipticals and Dwarf Spheroidals 613
13.6.1 The Formation of Galactic Bulges 614
13.6.2 The Formation of Dwarf Ellipticals 616
14 Active Galaxies 618
14.1 The Population of Active Galactic Nuclei 619
14.2 The Supermassive Black Hole Paradigm 623
14.2.1 The Central Engine 623
14.2.2 Accretion Disks 624
14.2.3 Continuum Emission 626
14.2.4 Emission Lines 631
14.2.5 Jets, Superluminal Motion and Beaming 633
14.2.6 Emission-Line Regions and Obscuring Torus 637
14.2.7 The Idea of Unification 638
14.2.8 Observational Tests for Supermassive Black Holes 639
14.3 The Formation and Evolution of AGN 640
14.3.1 The Growth of Supermassive Black Holes and the Fueling of AGN 640
14.3.2 AGN Demographics 644
14.3.3 Outstanding Questions 647
14.4 AGN and Galaxy Formation 648
14.4.1 Radiative Feedback 649
14.4.2 Mechanical Feedback 650
15 Statistical Properties of the Galaxy Population 652
15.1 Preamble 652
15.2 Galaxy Luminosities and Stellar Masses 654
15.2.1 Galaxy Luminosity Functions 654
15.2.2 Galaxy Counts 658
15.2.3 Extragalactic Background Light 660
15.3 Linking Halo Mass to Galaxy Luminosity 663
15.3.1 Simple Considerations 663
15.3.2 The Luminosity Function of Central Galaxies 665
15.3.3 The Luminosity Function of Satellite Galaxies 666
15.3.4 Satellite Fractions 668
15.3.5 Discussion 669
15.4 Linking Halo Mass to Star-Formation History 670
15.4.1 The Color Distribution of Galaxies 670
15.4.2 Origin of the Cosmic Star-Formation History 673
15.5 Environmental Dependence 674
15.5.1 Effects within Dark Matter Halos 675
15.5.2 Effects on Large Scales 677
15.6 Spatial Clustering and Galaxy Bias 679
15.6.1 Application to High-Redshift Galaxies 683
Contents xv
15.7 Putting it All Together 684
15.7.1 Semi-Analytical Models 684
15.7.2 Hydrodynamical Simulations 686
16 The Intergalactic Medium 689
16.1 The Ionization State of the Intergalactic Medium 690
16.1.1 Physical Conditions after Recombination 690
16.1.2 The Mean Optical Depth of the IGM 690
16.1.3 The Gunn–Peterson Test 692
16.1.4 Constraints from the Cosmic Microwave Background 694
16.2 Ionizing Sources 695
16.2.1 Photoionization versus Collisional Ionization 695
16.2.2 Emissivity from Quasars and Young Galaxies 697
16.2.3 Attenuation by Intervening Absorbers 699
16.2.4 Observational Constraints on the UV Background 701
16.3 The Evolution of the Intergalactic Medium 702
16.3.1 Thermal Evolution 702
16.3.2 Ionization Evolution 704
16.3.3 The Epoch of Re-ionization 705
16.3.4 Probing Re-ionization with 21-cm Emission and Absorption 707
16.4 General Properties of Absorption Lines 709
16.4.1 Distribution Function 709
16.4.2 Thermal Broadening 710
16.4.3 Natural Broadening and Voigt Profiles 711
16.4.4 Equivalent Width and Column Density 712
16.4.5 Common QSO Absorption Line Systems 714
16.4.6 Photoionization Models 714
16.5 The Lyman α Forest 714
16.5.1 Redshift Evolution 715
16.5.2 Column Density Distribution 716
16.5.3 Doppler Parameter 717
16.5.4 Sizes of Absorbers 718
16.5.5 Metallicity 719
16.5.6 Clustering 720
16.5.7 Lyman α Forests at Low Redshift 721
16.5.8 The Helium Lyman α Forest 722
16.6 Models of the Lyman α Forest 723
16.6.1 Early Models 723
16.6.2 Lyman α Forest in Hierarchical Models 724
16.6.3 Lyman α Forest in Hydrodynamical Simulations 731
16.7 Lyman-Limit Systems 732
16.8 Damped Lyman α Systems 733
16.8.1 Column Density Distribution 734
16.8.2 Redshift Evolution 734
16.8.3 Metallicities 736
16.8.4 Kinematics 738
xvi Contents
16.9 Metal Absorption Line Systems 738
16.9.1 MgII Systems 739
16.9.2 CIV and OVI Systems 740
A Basics of General Relativity 741
A1.1 Space-time Geometry 741
A1.2 The Equivalence Principle 743
A1.3 Geodesic Equations 744
A1.4 Energy–Momentum Tensor 746
A1.5 Newtonian Limit 747
A1.6 Einstein’s Field Equation 747
B Gas and Radiative Processes 748
B1.1 Ideal Gas 748
B1.2 Basic Equations 749
B1.3 Radiative Processes 751
B1.3.1 Einstein Coefficients and Milne Relation 752
B1.3.2 Photoionization and Photo-excitation 755
B1.3.3 Recombination 756
B1.3.4 Collisional Ionization and Collisional Excitation 757
B1.3.5 Bremsstrahlung 758
B1.3.6 Compton Scattering 759
B1.4 Radiative Cooling 760
C Numerical Simulations 764
C1.1 N-Body Simulations 764
C1.1.1 Force Calculations 766
C1.1.2 Issues Related to Numerical Accuracy 767
C1.1.3 Boundary Conditions 769
C1.1.4 Initial Conditions 769
C1.2 Hydrodynamical Simulations 770
C1.2.1 Smoothed-Particle Hydrodynamics (SPH) 770
C1.2.2 Grid-Based Algorithms 772
D Frequently Used Abbreviations 775
E Useful Numbers 776
References 777
Index
回复此楼

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com
  • 附件 1 : Galaxy_Formation_and_Evolution_(Cambridge_2010).pdf
  • 2015-01-29 10:45:07, 12.11 M

» 收录本帖的淘帖专辑推荐

经典资源帖 自然科学

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

budongi

木虫 (正式写手)


★★★★★ 五星级,优秀推荐

顶一下,感谢分享!下来看看
19楼2016-10-14 09:25:26
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

fortran_19

铜虫 (正式写手)


楼主有没有关于恒星演化 主要是超新星爆发 这方面的书籍

发自小木虫IOS客户端
26楼2017-10-25 12:48:09
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

atwoodcloyd

新虫 (著名写手)


★★★★★ 五星级,优秀推荐

感谢分享,非常有意思,了解星系
33楼2019-05-22 21:18:04
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
2015-01-29 14:31   回复  
五星好评  顶一下,感谢分享!
phykid3楼
2015-02-01 02:52   回复  
五星好评  顶一下,感谢分享!
bobrock4楼
2015-02-01 05:51   回复  
五星好评  顶一下,感谢分享!
ha16685楼
2015-02-01 17:27   回复  
五星好评  顶一下,感谢分享!
2015-02-06 23:05   回复  
五星好评  顶一下,感谢分享!
kuangpan7楼
2015-02-17 16:04   回复  
五星好评  顶一下,感谢分享!
2015-03-28 14:54   回复  
五星好评  顶一下,感谢分享!
great_ice9楼
2015-04-10 22:07   回复  
五星好评  顶一下,感谢分享!
jjnie10楼
2015-04-12 14:32   回复  
五星好评  顶一下,感谢分享!
114088518311楼
2015-05-22 10:47   回复  
五星好评  顶一下,感谢分享!
mechtest12楼
2015-05-22 14:08   回复  
五星好评  顶一下,感谢分享!
2015-06-09 15:51   回复  
五星好评  顶一下,感谢分享!
wslaoluo14楼
2015-10-11 15:59   回复  
五星好评  顶一下,感谢分享!
2015-11-03 21:05   回复  
五星好评  顶一下,感谢分享!
jfmamj16楼
2015-12-11 16:06   回复  
五星好评  顶一下,感谢分享!
gxw021817楼
2015-12-19 22:06   回复  
五星好评  顶一下,感谢分享!
pcliu_018楼
2016-08-14 17:04   回复  
五星好评  顶一下,感谢分享!
lekf12320楼
2016-12-06 14:50   回复  
五星好评  顶一下,感谢分享!
2016-12-17 17:59   回复  
五星好评  顶一下,感谢分享!
2017-02-28 12:02   回复  
五星好评  顶一下,感谢分享!
liuwei874723楼
2017-03-28 19:42   回复  
三星好评  顶一下,感谢分享!
gxsun24楼
2017-10-20 15:33   回复  
五星好评  顶一下,感谢分享!
guhe25楼
2017-10-21 12:31   回复  
五星好评  顶一下,感谢分享!
fortran_1927楼
2017-10-25 14:04   回复  
五星好评  顶一下,感谢分享!
nmns28楼
2017-11-06 11:11   回复  
五星好评  顶一下,感谢分享!
2017-12-22 14:51   回复  
五星好评  顶一下,感谢分享!
jpqrest30楼
2018-03-01 15:52   回复  
五星好评  顶一下,感谢分享!
2018-05-21 22:05   回复  
五星好评  顶一下,感谢分享!
xjvoooo32楼
2019-04-17 06:31   回复  
五星好评  顶一下,感谢分享!
2019-07-03 17:40   回复  
五星好评  顶一下,感谢分享!
zyb1313235楼
2019-07-13 11:48   回复  
五星好评  顶一下,感谢分享!
steelish36楼
2019-08-04 12:43   回复  
五星好评  顶一下,感谢分享!
相关版块跳转 我要订阅楼主 pkusiyuan 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见