| ²é¿´: 898 | »Ø¸´: 1 | ||
ÍüÓǹÈ3987Òø³æ (СÓÐÃûÆø)
|
[ÇóÖú]
ÓйطǸº¾ØÕóµÄMATLAB³ÌÐòÓÅ»¯
|
|
Ç×ÃÇ£ºÎÒ±àÁËÒ»¸öÓйطǸº¾ØÕó·Ö½âËã·¨µÄMATLAB³ÌÐò£¬µ«ÊÇÓë±ðÈ˵ÄʵÑé½á¹ûÏà±È£¬µü´ú´ÎÊýºÍʱ¼ä±ÈÔʼÊý¾Ý²îºÜ¶à£¬µ«ÊÇÎÒ²»»áÓÅ»¯³ÌÐò£¬Âé·³´óÉñÃǸøÖ¸µ¼Ö¸µ¼£¬·Ç³£¸Ðл function [W,iter_W,gradW]=QRPBB(V,Winit,H,maxiter,tol) W=Winit; alpha_max=1.0e+20; alpha_min=1.0e-20; M=5; row=0.25; gama=1.0e-4; HHt=H*H'; VHt=V*H'; L=norm(HHt); delta0=-sum(sum(H.*(W'*V))); dQd0=sum(sum((H.*(W'*W*H)))); f0=delta0+0.5*dQd0; for k=1:maxiter; gradW=W*HHt-VHt;%¼ÆËãWµÄÌݶȣ» projgrad = norm(gradW(gradW<0 | W>0),'fro');%WµÄͶӰ·¶Êý£» if projgrad<tol;%ÖÕÖ¹Ìõ¼þµÄÅжϣ» break; end if k==1; alpha=1;%³õʼalpha end Z=max(0,W-gradW/L);%Óɹ¹ÔìµÄÑϸñ͹¶þ´Îº¯ÊýÇó³öµÄ·â±Õ½â£» gradZ=Z*HHt-VHt; Zn=max(0,Z-alpha*gradZ);%Ϊ¶¨Òå·½Ïò¶ø¶¨ÒåµÄÒ»¸öÖмä±äÁ¿£» D=Zn-Z;%µü´ú·½Ïò£» delta=sum(sum(D.*gradZ)); dQd=sum(sum((H.*(Z'*Z*H)))); %ËѲ½³¤ if k==1; func(k)=f0 ; else func(k)=fn; end jj=min(k-1,M-1); fmax=max(func(k-jj:k)); m=0;maxm=20;mk=0; while (m<maxm); fn=func(k)+row^m*delta+0.5*row^(2*m)*dQd; if(fn<=fmax+gama*row^m*delta),%ÅжÏÄ¿±êº¯ÊýϽµ£» mk=m;%Âú×ãʹµÄÄ¿±êº¯ÊýϽµµÄ×îСÕýÕûÊý£» break; end m=m+1; end lamda=row^mk;%¸üÐÂlamdaÓÃÓÚ²úÉúеĵü´úµãW£» %µü´ú¸ñʽ W=Z+lamda*D; %BB²½¸üз½ÏòD£» s=D; y=D*HHt; b=sum(sum(s.*s)); c=sum(sum(s.*y)); alphaBB=b/c; if (c<=0), alpha=alpha_max; else alpha=min(alpha_max,max(alpha_min,alphaBB)); end iter_W=k; end if k==maxiter, fprintf('Max k in QRPBB\n'); end ²âÊÔÎÊÌâ clear clc l= 100; n = 200; r =15; % V = rand(;l,n); Winit= rand(l,r); Hinit= rand(r,n); V = abs(rand(l,r))*abs(rand(r,n)); tol=1.e-7; maxtime=1000; maxiter=5000;%×î´óµü´ú´ÎÊý tic [W,iter_W,gradW]=QRPBB(V,Winit,H,maxiter,tol); toc Ï£Íû¿ÉÒԽ̽ÌÎÒ¾ßÌåÔõÑùÓÅ»¯Ò»¸ö³ÌÐò£¬²ÅÄÜʹµÃËüµÄµü´ú´ÎÊýºÍʱ¼ä½µµÍ£¬Ð»Ð»£¡£¡ |
» ²ÂÄãϲ»¶
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ4È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ6È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ4È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ5È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ5È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ8È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ8È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ10È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ6È˻ظ´
ÊÛSCIÒ»ÇøÎÄÕ£¬ÎÒ:8 O5 51O 54,¿ÆÄ¿ÆëÈ«,¿É+¼±
ÒѾÓÐ6È˻ظ´
» ±¾Ö÷ÌâÏà¹Ø¼ÛÖµÌùÍÆ¼ö£¬¶ÔÄúͬÑùÓаïÖú:
ÇëÎÊ´óÏÀmatlabµÄµÄÏà¹Ø³ÌÐò
ÒѾÓÐ4È˻ظ´
forÑ»·Óï¾äµÄ¼ÓËÙÓÅ»¯ÇóÖú£¡
ÒѾÓÐ8È˻ظ´
MatlabÐĵü°Ñ§Ï°·½·¨£¨²»¶Ï¸üУ©
ÒѾÓÐ26È˻ظ´
MATLAB ³ÌÐòÓÅ»¯
ÒѾÓÐ4È˻ظ´
Óиömatlab³ÌÐò£¬µ«ÊÇÔËÐв»ÏÂÀ´£¬Çó¸ßÊÖ
ÒѾÓÐ23È˻ظ´
ʹÓÃÀ¸ñÀÊÈÕÓÅ»¯£¬µ«Matlab ÔËÐв»³ö½á¹ûÀ´
ÒѾÓÐ7È˻ظ´
Fortran Çó½â¸´Êý¾ØÕóSVDʱ£¬Óõ½cgesvd£¬½á¹ûÓëmatlab²»Í¬£¬ÎªÊ²Ã´£¿
ÒѾÓÐ15È˻ظ´
Çó½ÌmatlabÏßÐÔÓÅ»¯Çó×îСֵµÄÎÊÌâ
ÒѾÓÐ7È˻ظ´
Çë½ÌMATLABÖеÄLMIÇó½âÎÊÌ⣬¼±£¡£¡£¡
ÒѾÓÐ7È˻ظ´
ÇóÖú£ºÒÅ´«Ëã·¨µÄmatlab±à³ÌÇó½â×ÊÔ´ÓÅ»¯ÎÊÌâ
ÒѾÓÐ7È˻ظ´
ÇóÖú£º×ÊÔ´ÓÅ»¯ÎÊÌâµÄÒÅ´«Ëã·¨matlab±à³Ì
ÒѾÓÐ5È˻ظ´
Matlab´úÂëÓÅ»¯
ÒѾÓÐ3È˻ظ´
matlab³ÌÐòµ÷ÊÔ
ÒѾÓÐ7È˻ظ´
ÇóÖúÒ»¸ömatlab¹ØÓÚ·ÖÀàÌÖÂÛµÄÎÊÌâ
ÒѾÓÐ9È˻ظ´
matlabÏßÐÔ¾ØÕó²»µÈʽÇó½â×öÓÅ»¯ÎÊÌâ
ÒѾÓÐ10È˻ظ´
ͼ¹æÕûµÄ·Ç¸º¾ØÕó·Ö½â£ºGraph Regularized Nonnegative Matrix Factorization
ÒѾÓÐ19È˻ظ´
¡¾ÇóÖú¡¿matlab ¶þ´Î¹æ»®µÄÓÅ»¯µÄÎÊÌâ
ÒѾÓÐ4È˻ظ´
¡¾ÇóÖú¡¿¶àÄ¿±êpsoËã·¨µÄMATLAB³ÌÐò
ÒѾÓÐ3È˻ظ´

hyk2006
ľ³æ (СÓÐÃûÆø)
- Ó¦Öú: 0 (Ó×¶ùÔ°)
- ½ð±Ò: 8928.8
- É¢½ð: 200
- Ìû×Ó: 206
- ÔÚÏß: 202.5Сʱ
- ³æºÅ: 636661
- ×¢²á: 2008-10-25
- רҵ: Ô˳ïѧ
2Â¥2018-02-06 11:06:14













»Ø¸´´ËÂ¥