|
|
【答案】应助回帖
★ ★ ★ ★ ★ ★ ★ ★ 感谢参与,应助指数 +1 sunshan4379: 金币+8, 感谢应助! 2014-11-26 16:17:48 sunshan4379: LS-EPI+1, 感谢应助! 2014-11-26 16:19:09
Comparison of Sampling Designs for Estimating Deforestation from Landsat TM and MODIS Imagery: A Case Study in Mato Grosso, Brazil
作者:Zhu, SY (Zhu, Shanyou)[ 1 ] ; Zhang, HL (Zhang, Hailong)[ 1 ] ; Liu, RG (Liu, Ronggao)[ 2 ] ; Cao, Y (Cao, Yun)[ 1 ] ; Zhang, GX (Zhang, Guixin)[ 1 ]
SCIENTIFIC WORLD JOURNAL
文献号: 919456
DOI: 10.1155/2014/919456
出版年: 2014
查看期刊信息
摘要
Sampling designs are commonly used to estimate deforestation over large areas, but comparisons between different sampling strategies are required. Using PRODES deforestation data as a reference, deforestation in the state of Mato Grosso in Brazil from 2005 to 2006 is evaluated using Landsat imagery and a nearly synchronous MODIS dataset. The MODIS-derived deforestation is used to assist in sampling and extrapolation. Three sampling designs are compared according to the estimated deforestation of the entire study area based on simple extrapolation and linear regression models. The results show that stratified sampling for strata construction and sample allocation using the MODIS-derived deforestation hotspots provided more precise estimations than simple random and systematic sampling. Moreover, the relationship between the MODIS-derived and TM-derived deforestation provides a precise estimate of the total deforestation area as well as the distribution of deforestation in each block.
关键词
KeyWords Plus:FOREST DISTURBANCE DETECTION; TROPICAL DEFORESTATION; SATELLITE DATA; COVER; AMAZON; STRATEGIES; VEGETATION; RECORD
作者信息
通讯作者地址: Zhu, SY (通讯作者)
[显示增强组织信息的名称] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing, Nanjing 210044, Jiangsu, Peoples R China.
地址:
[显示增强组织信息的名称] [ 1 ] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing, Nanjing 210044, Jiangsu, Peoples R China
[显示增强组织信息的名称] [ 2 ] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
电子邮件地址:zsyzgx@163.com
基金资助致谢
基金资助机构 授权号
Chinese 973 Project
2010CB950701
Natural Science Foundation of China
41001289
41201369
查看基金资助信息
出版商
HINDAWI PUBLISHING CORPORATION, 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA
类别 / 分类
研究方向:Science & Technology - Other Topics
Web of Science 类别:Multidisciplinary Sciences
文献信息
文献类型:Article
语种:English
入藏号: WOS:000343579300001
ISSN: 1537-744X
期刊信息
Impact Factor (影响因子): Journal Citation Reports®
其他信息
IDS 号: AR4TL
Web of Science 核心合集中的 "引用的参考文献": 39
Web of Science 核心合集中的 "被引频次": 0 |
|