|
[资源]
牛津大学出版社,经典晶体结构教材,Properties of Materials
材料结构老师极力推荐的,牛津大学出版社,经典晶体结构教材,Properties of Materials,
现已找到电子版!值得珍藏下载!!
Anisotropy, Symmetry, Structure
作者,ROBERT E. NEWNHAM
Pennsylvania State University
Contents
1 Introduction 1
1.1 Outline 1
1.2 Structure–property relationships 3
1.3 Symmetry of physical properties 4
1.4 Atomistic arguments: Density 5
2 Transformations 9
2.1 Why transformations? 9
2.2 Axis transformations 9
2.3 Orthogonality conditions 10
2.4 General rotation (Eulerian angles) 12
3 Symmetry 14
3.1 Symmetry operations 14
3.2 Symmetry elements and stereographic projections 15
3.3 Point groups and their stereograms 17
3.4 Crystallographic nomenclature 20
3.5 Point group populations 20
4 Transformation operators for symmetry elements 23
4.1 Transformation operators for the crystallographic
symmetry elements 23
4.2 Transformation operations for the thirty-two crystal
classes 25
4.3 Standard settings 26
4.4 Curie group symmetries 26
5 Tensors and physical properties 30
5.1 Physical properties 30
5.2 Polar tensors and tensor properties 31
5.3 Axial tensor properties 32
5.4 Geometric representations 33
5.5 Neumann’s Principle 34
5.6 Analytical form of Neumann’s Principle 34
6 Thermodynamic relationships 37
6.1 Linear systems 37
6.2 Coupled interactions: Maxwell relations 38
6.3 Measurement conditions 40
viii Contents
7 Specific heat and entropy 43
7.1 Heat capacity of solids 43
7.2 Lattice vibrations 46
7.3 Entropy and the magnetocaloric effect 48
8 Pyroelectricity 50
8.1 Pyroelectric and electrocaloric tensors 50
8.2 Symmetry limitations 50
8.3 Polar axes 52
8.4 Geometric representation 53
8.5 Pyroelectric measurements 54
8.6 Primary and secondary pyroelectric effects 54
8.7 Pyroelectric materials 55
8.8 Temperature dependence 55
8.9 Applications 57
9 Dielectric constant 58
9.1 Origins of the dielectric constant 58
9.2 Dielectric tensor 60
9.3 Effect of symmetry 62
9.4 Experimental methods 63
9.5 Geometric representation 67
9.6 Polycrystalline dielectrics 69
9.7 Structure–property relationships 69
10 Stress and strain 72
10.1 Mechanical stress 72
10.2 Stress transformations 74
10.3 Strain tensor 75
10.4 Matrix transformation for strain 77
11 Thermal expansion 79
11.1 Effect of symmetry 79
11.2 Thermal expansion measurements 81
11.3 Structure–property relations 82
11.4 Temperature dependence 85
12 Piezoelectricity 87
12.1 Tensor and matrix formulations 87
12.2 Matrix transformations and Neumann’s Law 89
12.3 Piezoelectric symmetry groups 91
12.4 Experimental techniques 93
12.5 Structure–property relations 94
12.6 Hydrostatic piezoelectric effect 97
12.7 Piezoelectric ceramics 99
12.8 Practical piezoelectrics: Quartz crystals 100
13 Elasticity 103
13.1 Tensor and matrix coefficients 103
Contents ix
13.2 Tensor and matrix transformations 105
13.3 Stiffness-compliance relations 106
13.4 Effect of symmetry 107
13.5 Engineering coefficients and measurement
methods 109
13.6 Anisotropy and structure–property relations 110
13.7 Compressibility 113
13.8 Polycrystalline averages 114
13.9 Temperature coefficients 116
13.10 Quartz crystal resonators 118
14 Magnetic phenomena 122
14.1 Basic ideas and units 122
14.2 Magnetic structures and time reversal 124
14.3 Magnetic point groups 125
14.4 Magnetic axial vectors 130
14.5 Saturation magnetization and pyromagnetism 131
14.6 Magnetic susceptibility and permeability 134
14.7 Diamagnetic and paramagnetic crystals 135
14.8 Susceptibility measurements 137
14.9 Magnetoelectricity 138
14.10 Piezomagnetism 142
14.11 Summary 146
15 Nonlinear phenomena 147
15.1 Nonlinear dielectric properties 147
15.2 Nonlinear elastic properties 148
15.3 Electrostriction 151
15.4 Magnetostriction 153
15.5 Modeling magnetostriction 154
15.6 Magnetostrictive actuators 159
15.7 Electromagnetostriction and
pseudopiezoelectricity 160
16 Ferroic crystals 162
16.1 Free energy formulation 162
16.2 Ferroelasticity 165
16.3 Ferromagnetism 168
16.4 Magnetic anisotropy 170
16.5 Ferroelectricity 174
16.6 Secondary ferroics: Ferrobielectricity and
ferrobimagnetism 177
16.7 Secondary ferroics: Ferrobielasticity and
ferroelastoelectricity 179
16.8 Secondary ferroics: Ferromagnetoelectrics and
ferromagnetoelastics 182
16.9 Order parameters 183
17 Electrical resistivity 188
17.1 Tensor and matrix relations 188
x Contents
17.2 Resistivity measurements 189
17.3 Electrode metals 191
17.4 Anisotropic conductors 193
17.5 Semiconductors and insulators 194
17.6 Band gap and mobility 196
17.7 Nonlinear behavior: Varistors and thermistors 199
17.8 Quasicrystals 202
18 Thermal conductivity 203
18.1 Tensor nature and experiments 203
18.2 Structure–property relationships 206
18.3 Temperature dependence 208
18.4 Field dependence 210
19 Diffusion and ionic conductivity 211
19.1 Definition and tensor formulation 211
19.2 Structure–property relationships 212
19.3 Ionic conductivity 217
19.4 Superionic conductors 219
19.5 Cross-coupled diffusion 220
20 Galvanomagnetic and thermomagnetic
phenomena 223
20.1 Galvanomagnetic effects 224
20.2 Hall Effect and magnetoresistance 226
20.3 Underlying physics 227
20.4 Galvanomagnetic effects in magnetic materials 229
20.5 Thermomagnetic effects 232
21 Thermoelectricity 234
21.1 Seebeck Effect 234
21.2 Peltier Effect 235
21.3 Thomson Effect 235
21.4 Kelvin Relations and absolute thermopower 236
21.5 Practical thermoelectric materials 238
21.6 Tensor relationships 239
21.7 Magnetic field dependence 240
22 Piezoresistance 243
22.1 Tensor description 243
22.2 Matrix form 244
22.3 Longitudinal and transverse gages 245
22.4 Structure–property relations 247
23 Acoustic waves I 249
23.1 The Christoffel Equation 249
23.2 Acoustic waves in hexagonal crystals 252
23.3 Matrix representation 255
Contents xi
23.4 Isotropic solids and pure mode directions 256
23.5 Phase velocity and group velocity 258
24 Acoustic waves II 261
24.1 Acoustic impedance 261
24.2 Ultrasonic attenuation 262
24.3 Physical origins of attenuation 264
24.4 Surface acoustic waves 265
24.5 Elastic waves in piezoelectric media 266
24.6 Nonlinear acoustics 270
25 Crystal optics 274
25.1 Electromagnetic waves 274
25.2 Optical indicatrix and refractive index
measurements 276
25.3 Wave normals and ray directions 278
25.4 Structure–property relationships 280
25.5 Birefringence and crystal structure 282
26 Dispersion and absorption 286
26.1 Dispersion 286
26.2 Absorption, color, and dichroism 288
26.3 Reflectivity and luster 291
26.4 Thermo-optic effect 292
27 Photoelasticity and acousto-optics 294
27.1 Basic concepts 294
27.2 Photoelasticity 295
27.3 Static photoelastic measurements 296
27.4 Acousto-optics 298
27.5 Anisotropic media 300
27.6 Material issues 300
28 Electro-optic phenomena 302
28.1 Linear electro-optic effect 303
28.2 Pockels Effect in KDP and ADP 304
28.3 Linear electro-optic coefficients 308
28.4 Quadratic electro-optic effect 309
29 Nonlinear optics 313
29.1 Structure–property relations 313
29.2 Tensor formulation and frequency conversion 315
29.3 Second harmonic generation 316
29.4 Phase matching 318
29.5 Third harmonic generation 322
30 Optical activity and enantiomorphism 325
30.1 Molecular origins 325
xii Contents
30.2 Tensor description 327
30.3 Effect of symmetry 329
30.4 Relationship to enantiomorphism 331
30.5 Liquids and liquid crystals 333
30.6 Dispersion and circular dichroism 337
30.7 Electrogyration, piezogyration, and
thermogyration 340
31 Magneto-optics 342
31.1 The Faraday Effect 342
31.2 Tensor nature 343
31.3 Faraday Effect in microwave magnetics 345
31.4 Magneto-optic recording media 346
31.5 Magnetic circular dichroism 348
31.6 Nonlinear magneto-optic effects 350
31.7 Magnetoelectric optical phenomena 351
32 Chemical anisotropy 354
32.1 Crystal morphology 354
32.2 Growth velocity 356
32.3 Crystal growth and crystal structure 358
32.4 Surface structures and surface transformations 360
32.5 Etch figures and symmetry relations 361
32.6 Micromachining of quartz and silicon 363
32.7 Tensor description 366
Further Reading 369
Index 375 |
» 本帖附件资源列表
» 收录本帖的淘帖专辑推荐
» 本帖已获得的红花(最新10朵)
» 猜你喜欢
» 本主题相关价值贴推荐,对您同样有帮助:
|