24小时热门版块排行榜    

查看: 409  |  回复: 3
本帖产生 1 个 LS-EPI ,点击这里进行查看
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

baroshi

木虫 (正式写手)

[求助] 帮忙查一篇文章的SCI号,谢谢。

Selective multiple kernel learning for classification with ensemble strategy

[ 发自手机版 http://muchong.com/3g ]
回复此楼

» 猜你喜欢

KeepFighting
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

muse

捐助贵宾 (知名作家)

【答案】应助回帖

入藏号: WOS:000321232900017
点击我回帖下面的“送TA红花”,送我一朵红花吧!
4楼2014-09-21 18:51:13
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 4 个回答

muse

捐助贵宾 (知名作家)

【答案】应助回帖

感谢参与,应助指数 +1
Selective multiple kernel learning for classification with ensemble strategy

作者:Tao Sun; Licheng Jiao; Fang Liu; Shuang Wang; Jie Feng

Pattern Recognition

卷: 46  

期: 11  

页: 3081-90  

DOI: 10.1016/j.patcog.2013.04.003  

出版年: Nov. 2013  

摘要

Multiple Kernel Learning (MKL) aims to seek a better result than single kernel learning by combining a compact set of sub-kernels. However, MKL with L1-norm easily discards the sub-kernels with complementary information and MKL with Lp-norm(pges2) often gets the redundant solution. To address these problems, a Selective Multiple Kernel Learning (SMKL) method, inspired by Ensemble Learning (EL), is proposed. Comparing MKL with Lp-norm(pges2), SMKL obtains a sparse solution by a pre-selection procedure. Comparing MKL with L1-norm, SMKL preserves the sub-kernels with complementary information by guaranteeing the high discrimination and large diversity of pre-selected sub-kernels. For quantifying the discrimination and diversity of sub-kernels, a new kernel evaluation is designed. SMKL reduces the scale of MKL optimization and saves the memory storing of the sub-kernels, which extends the scale of problem that MKL could solve. Specially, a fast SMKL method using Linfinity-norm constraint is focused, which needs no MKL optimization process. It means that the memory is hardly a limitation for MKL with the large scale problem. Experiments state that our method is effective for classification. [All rights reserved Elsevier].
作者信息

作者地址: Tao Sun; Licheng Jiao; Shuang Wang; Jie Feng; Key Lab. of Intell. Perception & Image Understanding of Minist. of Educ. of China, Xidian Univ., Xi'an, China.

Fang Liu; Sch. of Comput. Sci. & Technol., Xidian Univ., Xi'an, China.
出版商

Elsevier Science Ltd., UK
类别 / 分类

研究方向:Computer Science; Mathematics (由 Thomson Reuters 提供)

分类代码:C1230L Learning in AI; C1180 Optimisation techniques

CODENTNRA8

受控索引:learning (artificial intelligence); optimisation; pattern classification

非受控索引:selective multiple kernel learning; ensemble strategy classificatio; single kernel learning; ensemble learning; EL; preselection procedure; Linfinity-norm constraint; SMKL method; MKL optimization process
文献信息

文献类型:Journal Paper

语种:English

入藏号:13704917

ISSN:0031-3203

参考文献数:32
期刊信息

    Impact Factor (影响因子): Journal Citation Reports®

其他信息

处理类型:Theoretical or Mathematical

文献号:S0031-3203(13)00173-8
点击我回帖下面的“送TA红花”,送我一朵红花吧!
2楼2014-09-21 18:50:40
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

muse

捐助贵宾 (知名作家)

【答案】应助回帖

★ ★ ★ ★ ★
baroshi: 金币+5, ★★★★★最佳答案 2014-09-21 18:56:25
sunshan4379: LS-EPI+1, 感谢应助! 2014-09-21 19:36:28
Selective multiple kernel learning for classification with ensemble strategy

作者:Sun, T (Sun, Tao)[ 1 ] ; Jiao, LC (Jiao, Licheng)[ 1 ] ; Liu, F (Liu, Fang)[ 2 ] ; Wang, S (Wang, Shuang)[ 1 ] ; Feng, J (Feng, Jie)[ 1 ]

PATTERN RECOGNITION

卷: 46

期: 11

页: 3081-3090

DOI: 10.1016/j.patcog.2013.04.003

出版年: NOV 2013

查看期刊信息
摘要

Multiple Kernel Learning (MKL) aims to seek a better result than single kernel learning by combining a compact set of sub-kernels. However, MKL. with L1-norm easily discards the sub-kernels with complementary information and MKL with Lp-norm(p >= 2) often gets the redundant solution. To address these problems, a Selective Multiple Kernel Learning (SMKL) method, inspired by Ensemble Learning (EL), is proposed. Comparing MKL with Lp-norm(p >= 2), SMKL obtains a sparse solution by a pre-selection procedure. Comparing MKL with Lp-norm, SMKL preserves the sub-kernels with complementary information by guaranteeing the high discrimination and large diversity of pre-selected sub-kernels. For quantifying the discrimination and diversity of sub-kernels, a new kernel evaluation is designed. SMKL reduces the scale of MKL optimization and saves the memory storing of the sub-kernels, which extends the scale of problem that MKL could solve. Specially, a fast SMKL method using L infinity-norm constraint is focused, which needs no MIC optimization process. It means that the memory is hardly a limitation for MKL with the large scale problem. Experiments state that our method is effective for classification. (C) 2013 Elsevier Ltd. All rights reserved.
关键词

作者关键词:Ensemble learning; Kernel evaluation; Multiple kernel learning; Selective multiple kernel learning; Fast selective multiple kernel learning

KeyWords PlusIMENSIONALITY REDUCTION
作者信息

通讯作者地址: Feng, J (通讯作者)
[显示增强组织信息的名称]         Xidian Univ, Minist Educ China, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China.

地址:
[显示增强组织信息的名称]         [ 1 ] Xidian Univ, Minist Educ China, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China
[显示增强组织信息的名称]         [ 2 ] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China

电子邮件地址:taosun@mail.xidian.edu.cn; lchjiao@mail.xidian.edu.cn; f63liu@163.com; shwang@mail.xidian.edu.cn; jiefeng0109@163.com
基金资助致谢
基金资助机构        授权号
National Basic Research Program (973 Program) of China        
2013CB329402
National Natural Science Foundation of China        
61173092
61072106
61003198
Program for New Century Excellent Talents in University        
NCET-11-0692
Fundamental Research Funds for the Central Universities        
K50510020001
K50513100012
查看基金资助信息   
出版商

ELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
类别 / 分类

研究方向:Computer Science; Engineering

Web of Science 类别:Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic
文献信息

文献类型:Article

语种:English

入藏号: WOS:000321232900017

ISSN: 0031-3203
期刊信息

    目录: Current Contents Connect®

    Impact Factor (影响因子): Journal Citation Reports®

其他信息

IDS 号: 175LT

Web of Science 核心合集中的 "引用的参考文献": 32

Web of Science 核心合集中的 "被引频次": 2
点击我回帖下面的“送TA红花”,送我一朵红花吧!
3楼2014-09-21 18:51:05
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
信息提示
请填处理意见