| 查看: 379 | 回复: 2 | |||
| 本帖产生 1 个 LS-EPI ,点击这里进行查看 | |||
baroshi木虫 (正式写手)
|
[求助]
帮忙查一篇文章的SCI号,谢谢。
|
||
|
A compressed sensing approach for efficient ensemble learning [ 发自手机版 http://muchong.com/3g ] |
» 猜你喜欢
假如你的研究生提出不合理要求
已经有10人回复
萌生出自己或许不适合搞科研的想法,现在跑or等等看?
已经有4人回复
Materials Today Chemistry审稿周期
已经有4人回复
参与限项
已经有3人回复
实验室接单子
已经有4人回复
全日制(定向)博士
已经有4人回复
对氯苯硼酸纯化
已经有3人回复
求助:我三月中下旬出站,青基依托单位怎么办?
已经有12人回复
所感
已经有4人回复
要不要辞职读博?
已经有7人回复

muse
捐助贵宾 (知名作家)
- LS-EPI: 147
- 应助: 314 (大学生)
- 贵宾: 0.549
- 金币: 20674
- 散金: 2783
- 红花: 81
- 沙发: 156
- 帖子: 6098
- 在线: 1468.2小时
- 虫号: 1207111
- 注册: 2011-02-19
- 专业: 保险学
【答案】应助回帖
★ ★ ★ ★ ★
感谢参与,应助指数 +1
baroshi: 金币+5, ★★★★★最佳答案 2014-09-21 19:06:41
sunshan4379: LS-EPI+1, 感谢应助! 2014-09-21 19:36:07
感谢参与,应助指数 +1
baroshi: 金币+5, ★★★★★最佳答案 2014-09-21 19:06:41
sunshan4379: LS-EPI+1, 感谢应助! 2014-09-21 19:36:07
|
A compressed sensing approach for efficient ensemble learning 作者:Li, L (Li, Lin)[ 1 ] ; Stolkin, R (Stolkin, Rustam)[ 2 ] ; Jiao, LC (Jiao, Licheng)[ 1 ] ; Liu, F (Liu, Fang)[ 1 ] ; Wang, S (Wang, Shuang)[ 1 ] PATTERN RECOGNITION 卷: 47 期: 10 页: 3451-3465 DOI: 10.1016/j.patcog.2014.04.015 出版年: OCT 2014 查看期刊信息 摘要 This paper presents a method for improved ensemble learning, by treating the optimization of an ensemble of classifiers as a compressed sensing problem. Ensemble learning methods improve the performance of a learned predictor by integrating a weighted combination of multiple predictive models. Ideally, the number of models needed in the ensemble should be minimized, while optimizing the weights associated with each included model. We solve this problem by treating it as an example of the compressed sensing problem, in which a sparse solution must be reconstructed from an under-determined linear system. Compressed sensing techniques are then employed to find an ensemble which is both small and effective. An additional contribution of this paper, is to present a new performance evaluation method (a new pairwise diversity measurement) called the roulette-wheel kappa-error. This method takes into account the different weightings of the classifiers, and also reduces the total number of pairs of classifiers needed in the kappa-error diagram, by selecting pairs through a roulette-wheel selection method according to the weightings of the classifiers. This approach can greatly improve the clarity and informativeness of the kappa-error diagram, especially when the number of classifiers in the ensemble is large. We use 25 different public data sets to evaluate and compare the performance of compressed sensing ensembles using four different sparse reconstruction algorithms, combined with two different classifier learning algorithms and two different training data manipulation techniques. We also give the comparison experiments of our method against another five state-of-the-art pruning methods. These experiments show that our method produces comparable or better accuracy, while being significantly faster than the compared methods. (C) 2014 Elsevier Ltd. All rights reserved. 关键词 作者关键词:Ensemble learning; Classification; Classifier ensemble; Sparse reconstruction; Compressed sensing; Roulette-wheel selection; Kappa-error KeyWords Plus:RANDOM SUBSPACE METHOD; CLASSIFIER ENSEMBLES; NEURAL-NETWORKS; ALGORITHMS; REGRESSION; DIVERSITY 作者信息 通讯作者地址: Li, L (通讯作者) [显示增强组织信息的名称] Xidian Univ, Int Res Ctr Intelligent Percept & Computat, Minist Educ, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China. 地址: [显示增强组织信息的名称] [ 1 ] Xidian Univ, Int Res Ctr Intelligent Percept & Computat, Minist Educ, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China [显示增强组织信息的名称] [ 2 ] Univ Birmingham, Sch Mech Engn, Birmingham B15 2TT, W Midlands, England 电子邮件地址:xdlinli86@163.com; lchjiao@mail.xidian.edu.cn 基金资助致谢 基金资助机构 授权号 National Natural Science Foundation of China 61371201 61001202 61272279 61273317 National Top Youth Talents Support Program of China 查看基金资助信息 出版商 ELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 类别 / 分类 研究方向:Computer Science; Engineering Web of Science 类别:Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic 文献信息 文献类型:Article 语种:English 入藏号: WOS:000338392400020 ISSN: 0031-3203 电子 ISSN: 1873-5142 期刊信息 目录: Current Contents Connect® Impact Factor (影响因子): Journal Citation Reports® 其他信息 IDS 号: AK4KA Web of Science 核心合集中的 "引用的参考文献": 47 Web of Science 核心合集中的 "被引频次": 0 |

2楼2014-09-21 18:42:43
muse
捐助贵宾 (知名作家)
- LS-EPI: 147
- 应助: 314 (大学生)
- 贵宾: 0.549
- 金币: 20674
- 散金: 2783
- 红花: 81
- 沙发: 156
- 帖子: 6098
- 在线: 1468.2小时
- 虫号: 1207111
- 注册: 2011-02-19
- 专业: 保险学

3楼2014-09-21 18:42:51












回复此楼