24小时热门版块排行榜    

查看: 331  |  回复: 2
本帖产生 1 个 LS-EPI ,点击这里进行查看

baroshi

木虫 (正式写手)

[求助] 帮忙查一篇文章的SCI号,谢谢。

A co-evolutionary muti-objective optimization algorithm based on direction vectors

[ 发自手机版 http://muchong.com/3g ]
回复此楼

» 猜你喜欢

KeepFighting
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

sunshan4379

版主 (文坛精英)

优秀版主优秀版主文献杰出贡献优秀版主

【答案】应助回帖

★ ★ ★ ★ ★
感谢参与,应助指数 +1
baroshi: 金币+5, ★★★★★最佳答案 2014-09-21 19:07:06
oven1986: LS-EPI+1, 感谢应助! 2014-09-22 19:30:13
A co-evolutionary multi-objective optimization algorithm based on direction vectors
作者:Jiao, LC (Jiao, L. C.)[ 1 ] ; Wang, HD (Wang, Handing)[ 1 ] ; Shang, RH (Shang, R. H.)[ 1 ] ; Liu, F (Liu, F.)[ 1 ]
INFORMATION SCIENCES
卷: 228  页: 90-112
DOI: 10.1016/j.ins.2012.12.013
出版年: APR 10 2013
查看期刊信息
摘要
Most real world multi-objective problems (MOPs) have a complicated solution space. Facing such problems, a direction vectors based co-evolutionary multi-objective optimization algorithm (DVCMOA) that introduces the decomposition idea from MOEA/D to co-evolutionary algorithms is proposed in this paper. It is novel in the sense that DVCMOA applies the concept of direction vectors to co-evolutionary algorithms. DVCMOA first divides the entire population into several subpopulations on the basis of the initial direction vectors in the objective space. Then, it solves MOPs through the co-evolutionary interaction among the subpopulations in which individuals are classified according to their direction vectors. Finally, it explores the less developed regions to maintain the relatively uniform distribution of the solution space. In this way, DVCMOA has advantages in convergence, diversity and uniform distribution of the non-dominated solution set, which are explained through comparison with other state-of-the-art multi-objective optimization evolutionary algorithms (MOEAs) in this paper. DVCMOA is shown to be effective on 6 multi-objective 0-1 knapsack problems. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved.
关键词
作者关键词:Multi-objective optimization; Co-evolutionary; Direction vector; Pareto set; MOEA/D
KeyWords Plus:GENETIC ALGORITHM; COMPETITIVE COEVOLUTION; PARETO FRONT; MOEA/D
作者信息
通讯作者地址: Wang, HD (通讯作者)
              Minist Educ China, Sch Elect Engn, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China.
地址:
              [ 1 ] Minist Educ China, Sch Elect Engn, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China
电子邮件地址:jlcxidian@163.com; wanghanding@163.com; rhshang@iiip.xidian.edu.cn; fliu@iiip.xidian.edu.cn
基金资助致谢
基金资助机构        授权号
National Natural Science Foundation of China        
61001202
61072139
60872135
60803098
61003199
Provincial Natural Science Foundation of Shaanxi of China        
2009JQ8015
2011JQ8010
2010JQ8023
China Post-Doctoral Science Foundation        
201104658
20090451369
20080431228
200801426
National Research Foundation for the Doctoral Program of Higher Education of China        
200807010003
20100203120008
20090203120016
Fundamental Research Funds for the Central Universities        
K50510020001
K50510020011
Fund for Foreign Scholars in University Research and Teaching Programs        
B07048
National Science and Technology Ministry of China        
9140A07011810DZ0107
9140A07021010DZ0131
Key Scientific and Technological Innovation Special Projects of Shaanxi "13115"        
2008ZDKG-37
查看基金资助信息   
出版商
ELSEVIER SCIENCE INC, 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
类别 / 分类
研究方向:Computer Science
Web of Science 类别:Computer Science, Information Systems
文献信息
文献类型:Article
语种:English
入藏号: WOS:000315245800007
ISSN: 0020-0255
电子 ISSN: 1872-6291
期刊信息
Impact Factor (影响因子): Journal Citation Reports®
其他信息
IDS 号: 094EM
Web of Science 核心合集中的 "引用的参考文献": 58
Web of Science 核心合集中的 "被引频次": 3
非淡泊无以明志,非宁静无以致远
2楼2014-09-21 18:01:12
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

sunshan4379

版主 (文坛精英)

优秀版主优秀版主文献杰出贡献优秀版主

【答案】应助回帖

检索号: WOS:000315245800007
非淡泊无以明志,非宁静无以致远
3楼2014-09-21 18:01:34
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 baroshi 的主题更新
信息提示
请填处理意见