24小时热门版块排行榜    

查看: 415  |  回复: 2
本帖产生 1 个 LS-EPI ,点击这里进行查看

sina1300841

木虫 (正式写手)

[求助] 求助论文是否SCI检索?

求助论文“Fabric defect image segmentation based on visual attention mechanism of wavelet domain”是否SCI检索?
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

baiyuefei

版主 (文学泰斗)

风雪

优秀版主优秀版主优秀版主文献杰出贡献优秀版主优秀版主优秀版主文献杰出贡献优秀版主优秀版主优秀版主优秀版主文献杰出贡献优秀版主优秀版主优秀版主优秀版主优秀版主优秀版主

【答案】应助回帖

★ ★ ★
感谢参与,应助指数 +1
sina1300841: 金币+3, ★★★很有帮助 2014-08-28 19:11:05
2楼2014-08-28 18:37:48
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

baiyuefei

版主 (文学泰斗)

风雪

优秀版主优秀版主优秀版主文献杰出贡献优秀版主优秀版主优秀版主文献杰出贡献优秀版主优秀版主优秀版主优秀版主文献杰出贡献优秀版主优秀版主优秀版主优秀版主优秀版主优秀版主

【答案】应助回帖

★ ★ ★
sina1300841: 金币+3, ★★★很有帮助 2014-08-28 19:10:18
sunshan4379: LS-EPI+1, 感谢应助! 2014-08-28 19:33:38
Fabric defect image segmentation based on the visual attention mechanism of the wavelet domain


作者:Guan, SQ (Guan, Shengqi)[ 1 ] ; Gao, ZY (Gao, Zhaoyuan)[ 1 ]




TEXTILE RESEARCH JOURNAL



卷: 84

期: 10

页: 1018-1033

DOI: 10.1177/0040517513517964

出版年: JUN 2014

查看期刊信息






























摘要

In order to explore the accurate image segmentation of fabric defects, we will introduce the visual attention mechanism of the wavelet domain to the dynamic detection of fabric defects. First of all, feature maps are formed by extracting simple features from a collection image. Secondly, feature maps by multi-layer wavelet decomposition are decomposed into a lot of feature sub-maps of the wavelet domain. On this basis, the center-surround operator among feature sub-maps of the wavelet domain is adopted to build the feature difference sub-maps, which are fused into feature saliency maps through fuse strategy. Finally, the defect interest areas are segmented based on the maximum between-cluster variance method in saliency maps, and the fabric defects through the region growing method are detected in the defect interest areas. Comparing with the wavelet transform algorithm, experimental results show that the proposed method is able to segment the defect information completely, and it has a strong ability to resist noise interference, which can improve the accuracy of defect detection.


关键词

作者关键词:wavelet domain; visual attention mechanism; feature saliency map; image segmentation

KeyWords Plus:INSPECTION


作者信息

通讯作者地址: Guan, SQ (通讯作者)



      

Xian Polytech Univ, Coll Mech & Elect Engn, 19 South Rd, Xian, Peoples R China.



地址:



      

[ 1 ] Xian Polytech Univ, Coll Mech & Elect Engn, Xian, Peoples R China



电子邮件地址:sina1300841@163.com


基金资助致谢



基金资助机构

授权号



Scientific Research Program - Shan xi Provincial Education Department


2013JK1083



Doctoral scientific Research - Xi'an Polytechnic University


BS1005

查看基金资助信息   




出版商

SAGE PUBLICATIONS LTD, 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND


类别 / 分类

研究方向:Materials Science

Web of Science 类别:Materials Science, Textiles


文献信息

文献类型:Article

语种:English

入藏号: WOS:000338014400002

ISSN: 0040-5175

电子 ISSN: 1746-7748


期刊信息


Impact Factor (影响因子): Journal Citation Reports®


其他信息

IDS 号: AJ9FZ

Web of Science 核心合集中的 "引用的参考文献": 22

Web of Science 核心合集中的 "被引频次": 0


引文网络




0 被引频次

22 引用的参考文献

查看 Related Records

查看引证关系图

创建引文跟踪

(数据来自 Web of ScienceTM 核心合集)



全部被引频次计数



0 / 所有数据库

0 / Web of Science 核心合集

0 / BIOSIS Citation Index

0 / 中国科学引文数据库

0 / Data Citation Index

0 / SciELO Citation Index



此记录来自:

Web of ScienceTM 核心合集


建议修正


如果希望提高此记录中数据的质量,请提供修正建议。
3楼2014-08-28 18:37:59
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 sina1300841 的主题更新
信息提示
请填处理意见