24小时热门版块排行榜    

查看: 928  |  回复: 15
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

十点钟的咖啡

金虫 (正式写手)

[求助] iteration method for density equations_help_me 已有2人参与

hi there; I need some help with the following formulas
In the interaction picture.

     (1)

Then

   (2)

This equation can be iterated. and it is

   (3)



I can understand the eq.(2), but not the eq. (3).
Is anybody know how to get the equation (3). and why do we want to do such calculation?
回复此楼

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

walk1997

金虫 (著名写手)

★ ★ ★ ★ ★ ★ ★ ★ ★ ★
leongoall: 金币+10, 应楼主要求,奖励金币! 2014-06-28 19:28:45
引用回帖:
9楼: Originally posted by mshwangg at 2014-06-28 00:29:21
自变量只有一个t没错。
如果没料错的话,\rho是density operator。大约会有数个、数十个,或者数百个
确定这样的方程,积分更好吗?我觉得积分恐怖啊...

不确定 因为我也没实践过
你可以动手试试
(1,2维的解起来应该效率还好)
我猜测:
   后者也选用合适的基展开的话  使积分能解析解出来
   这样  就只需要做矩阵对角化之类的工作了

另外 我感觉 任何的微分都可以化成积分形式
(绝大部分吧 或者 化为泛函的极值问题)
但积分方程不一定能化为微分方程  这样普遍些 -- 个人感觉 可能不准确
10楼2014-06-28 05:27:17
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 16 个回答

mshwangg

至尊木虫 (正式写手)

【答案】应助回帖


感谢参与,应助指数 +1
十点钟的咖啡: 金币+1 2014-06-27 14:50:51
What your aim is to solve equation 1.
However, the statement in eq.2 and eq3 is only the method using Euler's formula. The precision of this method is the order of h^3 (h is the step).
In many cases, the h^3 precision is not sufficient for meeting your expectation.
In my opinion, it's better to use the Runge-Kutta method or use some software such as Matlab or Mathematica
2楼2014-06-27 14:27:15
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

十点钟的咖啡

金虫 (正式写手)

引用回帖:
2楼: Originally posted by mshwangg at 2014-06-27 14:27:15
What your aim is to solve equation 1.
However, the statement in eq.2 and eq3 is only the method using Euler's formula. The precision of this method is the order of h^3 (h is the step).
In many case ...

My equations are about the numerical solution. I just do not get the analytic solution (3). How can we derive the eq.(3) for (1) and (2)?
3楼2014-06-27 14:48:47
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

十点钟的咖啡

金虫 (正式写手)

引用回帖:
2楼: Originally posted by mshwangg at 2014-06-27 14:27:15
What your aim is to solve equation 1.
However, the statement in eq.2 and eq3 is only the method using Euler's formula. The precision of this method is the order of h^3 (h is the step).
In many case ...

This is not the Euler's method. There is always a fact of (1/2!) when we use the second order Euler' method.

and when I try to get the second derivative of the density operator. I get:

4楼2014-06-27 15:00:09
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
信息提示
请填处理意见