| 查看: 1731 | 回复: 1 | |||
[交流]
ANSYS CFX14.5离散格式 已有1人参与
|
| 请问一下各位,ANSYS CFX14.5非定常计算求解中空间离散和时间离散格式都是什么呢??? |
» 猜你喜欢
A期刊撤稿
已经有5人回复
临港实验室与上科大联培博士招生1名
已经有8人回复
26申博自荐
已经有7人回复
想换工作。大多数高校都是 评职称时 认可5年内在原单位取得的成果吗?
已经有4人回复
带资进组求博导收留
已经有9人回复
求助大佬们,伤口沾上了乙腈
已经有6人回复
最近几年招的学生写论文不引自己组发的文章
已经有9人回复
» 本主题相关价值贴推荐,对您同样有帮助:
ANSYS_FLUENT_14.5中文培训教材
已经有147人回复
安装 ansys 14.5,一定要联网吗?
已经有5人回复
ANSYS CFX 14.0超算集群并行设置求助
已经有10人回复
ANSYS14.5 布尔操作问题
已经有4人回复
ANSYS CFX 14.5
已经有7人回复
ansys14.5安装教程!电子版
已经有88人回复
Ansys14.5中的Main Menu>Run-Time Stats在哪里
已经有9人回复
ANSYS CFX-BladeGen Tutorials
已经有104人回复
ANSYS CFX中应用零方程湍流模型
已经有5人回复
离散时间状态空间方程问题(控制方面)
已经有7人回复
ANSYS FLUENT & ANSYS CFX 培训PPT
已经有144人回复
Ansys CFX中怎么设置超声速出口速度边界条件
已经有9人回复
求用ANSYS12.0的 FLUENT例子
已经有4人回复

★
小木虫: 金币+0.5, 给个红包,谢谢回帖
小木虫: 金币+0.5, 给个红包,谢谢回帖
|
时间有点长,本来还是了解一些的,今天仔细看了一下,忘记的太多了,希望下面的东东对你有帮助,对于空间离散,其实很简单,就是基于把N-S方程基于网格离散化,我截取一段,CFX的内容考过来没公式,你去看一下帮助(详细介绍查cfx帮助);里面有一大章节讲的是这个。 Discretization of the Governing Equations ANSYS CFX uses an element-based finite volume method, which first involves discretizing the spatial domain using a mesh. The mesh is used to construct finite volumes, which are used to conserve relevant quantities such as mass, momentum, and energy. The mesh is three dimensional, but for simplicity we will illustrate this process for two dimensions 关于时间离散,我不记得具体应该怎么解释了,你也看一下帮助吧,我也把部分内容截给你看,我看了一下,觉得没怎么解释的太明白,所以不好在这里给你瞎解释,你自己参考一下。 11.1.1.8. Transient Term For control volumes that do not deform in time, the general discrete approximation of the transient term for the nth time step is: (11–35) where values at the start and end of the time step are assigned the superscripts n+½ and n-½, respectively. With the First Order Backward Euler scheme, the start and end of time step values are respectively approximated using the old and current time level solution values. The resulting discretization is: (11–36) It is robust, fully implicit, bounded, conservative in time, and does not have a time step size limitation. This discretization is, however, only first-order accurate in time and will introduce discretization errors that tend to diffuse steep temporal gradients. This behavior is similar to the numerical diffusion experienced with the Upwind Difference Scheme for discretizing the advection term. With the Second Order Backward Euler scheme, the start and end of time step values are respectively approximated as: (11–37) (11–38) When these values are substituted into the general discrete approximation, Equation 11–35, the resulting discretization is: (11–39) This scheme is also robust, implicit, conservative in time, and does not have a time step size limitation. It is second-order accurate in time, but is not bounded and may create some nonphysical solution oscillations. For quantities such as volume fractions, where boundedness is important, a modified Second Order Backward Euler scheme is used instead. |
2楼2014-05-29 15:57:45













回复此楼