24小时热门版块排行榜    

查看: 1393  |  回复: 12

felix2018

铁杆木虫 (正式写手)

[求助] 各位学泛函的大神们请进!有六道小题希望可以帮忙! 已有2人参与

此六道题都是泛函分析的习题,希望各位大神可以帮帮忙!(由于自己输入的问题,所以在括号做了个解释!
1.show that if x is compact,then given ε<0,there exist a finite set of points{xi}∈X,(i为下标)can be approximated to within ε by one of the xi for each x∈X,there is an xi such that |x-xi|<=ε
2.if Ωis bounded,what is the completion of Cc0 (空间下标c上标0)in the supremum norm?deduce that C2 0(空间下标2上标0)is not a banach space with this norm,treat similarly the case Ω=R m(m维欧式空间)
3.show that given s∈S(Ω),1<=p<∞,and ε>0,there exists an f∈C2 0(上标0下标2),such that ||f-s||Lp<ε(下标Lp空间),such that any point x∈X
4.let kㄈH(k属于H),be a convex cone with vertex at 0.i.e,0∈k and λu+μv∈k,any λ,μ>0,any u, v∈k,assume in addition that k is closed.given f∈H,prove that u=Pk f (f在k上的投影)in characterized by the following properties.any u∈k,(f-u,v)<=0,any v∈k and (f-u,u)=0
5.let Ω be a measure space and let h:Ω→[0,∞) be a measurable function .let k={u∈L2(Ω),|u(x)|<=h(x),a.e.on Ω}(2为上标L2空间)check that k is a nonempty closed convex set in H=L2(Ω).determine Pk.
6.let cㄈH be a nonempty closed convex set and let T:c→c,be a monlinear contraction i.e |Tu-Tv|<=|u-v|,any u,v∈c
1)let {un}(n为下标)be a sequence in c such that un→u weakly and |un-Tun|→f Strong prove that u→Tu=f
2)deduce that if c is bounded and T(c)ㄈc,then T has a fixed point.

[ Last edited by felix2018 on 2013-12-21 at 10:19 ]
回复此楼

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

世上没有绝望的处境,只有对处境绝望的人!
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

liuhaidong

木虫 (著名写手)

建议你看看泛函的书本,有一些书上可以找到证明的,比如第1题!
2楼2013-12-21 12:06:43
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

felix2018

铁杆木虫 (正式写手)

引用回帖:
2楼: Originally posted by liuhaidong at 2013-12-21 12:06:43
建议你看看泛函的书本,有一些书上可以找到证明的,比如第1题!

也对,不过其他题就有点困难了!

[ 发自小木虫客户端 ]
世上没有绝望的处境,只有对处境绝望的人!
3楼2013-12-21 12:34:56
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

laosam280

禁虫 (正式写手)

感谢参与,应助指数 +1
本帖内容被屏蔽

4楼2013-12-21 13:02:19
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

mujun06

禁虫 (小有名气)

感谢参与,应助指数 +1
本帖内容被屏蔽

5楼2013-12-21 14:31:15
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

felix2018

铁杆木虫 (正式写手)

引用回帖:
5楼: Originally posted by mujun06 at 2013-12-21 14:31:15
貌似都可以找到啊,多费点心了,这些题基本上都见过了,我也正在复习泛函呢,要考上交呢!

在哪个版的书上!

[ 发自手机版 http://muchong.com/3g ]
世上没有绝望的处境,只有对处境绝望的人!
6楼2013-12-21 18:58:43
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

mujun06

禁虫 (小有名气)

本帖内容被屏蔽

7楼2013-12-21 23:24:59
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

felix2018

铁杆木虫 (正式写手)

引用回帖:
7楼: Originally posted by mujun06 at 2013-12-21 23:24:59
不是全有,夏道行的,张公庆的,自己翻翻吧!找不到再说

各位大侠,你们能不能直接给出答案,不要再说去找之类的话,可以吗?

[ 发自小木虫客户端 ]
世上没有绝望的处境,只有对处境绝望的人!
8楼2013-12-22 13:19:18
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

mujun06

禁虫 (小有名气)

本帖内容被屏蔽

9楼2013-12-22 22:55:57
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

felix2018

铁杆木虫 (正式写手)

引用回帖:
9楼: Originally posted by mujun06 at 2013-12-22 22:55:57
还的编辑,现在没什么时间啊,要答辩,还要备考,真心忙点

可以拍下,发成照片啊!
世上没有绝望的处境,只有对处境绝望的人!
10楼2013-12-23 10:54:30
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 felix2018 的主题更新
信息提示
请填处理意见