| 查看: 2332 | 回复: 31 | ||
| 【奖励】 本帖被评价26次,作者1949stone增加金币 20.6 个 | ||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||
[资源]
Phylogenetic Networks:Concepts, Algorithms and Applications
|
||
|
Phylogenetic Networks:Concepts, Algorithms and Applications The evolutionary history of species is traditionally represented using a rooted phylogenetic tree. However, when reticulate events such as hybridization, horizontal gene transfer or recombination are believed to be involved, phylogenetic networks that can accommodate non-treelike evolution have an important role to play. This book provides the first interdisciplinary overview of phylogenetic networks. Beginning with a concise introduction to both phylogenetic trees and phylogenetic networks, the fundamental concepts and results are then presented for both rooted and unrooted phylogenetic networks. Current approaches and algorithms available for computing phylogenetic networks from different types of datasets are then discussed, accompanied by examples of their application to real biological datasets. The book also summarizes the algorithms used for drawing phylogenetic networks, along with the existing software for their computation and evaluation. All datasets, examples and other additional information and links are available fromthe book’s companion website at: www.phylogenetic-networks.org. Daniel H. Huson is Professor of Algorithms in Bioinformatics at T¨ubingenUniversity.He has authored numerous papers in bioinformatics, biology and mathematics, and is the main author of the widely used computer programs Dendroscope, MEGAN and SplitsTree. Regula Rupp received her PhD in Mathematics from Bern University in 2006. Between 2007 and 2009 she held a postdoctoral research position at T¨ubingen University, working with Daniel H. Huson in developing robust methods for computing phylogenetic networks from real biological data. Celine Scornavacca is a postdoctoral researcher working on algorithms for phylogenetic networks with Daniel H. Huson at T¨ubingen University. She received her PhD in Computer Science from Montpellier University in 2009. Preface page ix Part I Introduction 1 1 Basics 3 1.1 Overview 3 1.2 Undirected and directed graphs 3 1.3 Trees 7 1.4 Rooted DAGs 8 1.5 Traversals of trees and DAGs 9 1.6 Taxa, clusters, clades and splits 11 2 Sequence alignment 13 2.1 Overview 13 2.2 Pairwise sequence alignment 13 2.3 Multiple sequence alignment 20 3 Phylogenetic trees 23 3.1 Overview 23 3.2 Phylogenetic trees 24 3.3 The number of phylogenetic trees 27 3.4 Models of DNA evolution 29 3.5 The phylogenetic tree reconstruction problem 32 3.6 Sequence-based methods 33 3.7 Maximum parsimony 33 3.8 Branch-swapping methods 37 3.9 Maximum likelihood estimation 40 3.10 Bootstrap analysis 43 3.11 Bayesian methods 45 3.12 Distance-based methods 50 3.13 UPGMA 52 3.14 Neighbor-joining 54 3.15 Balanced minimum evolution 56 3.16 Comparing trees 60 3.17 Consensus trees 63 3.18 The Newick format 66 4 Introduction to phylogenetic networks 68 4.1 Overview 69 4.2 What is a phylogenetic network? 69 4.3 Unrooted phylogenetic networks 71 4.4 Rooted phylogenetic networks 76 4.5 The extended Newick format 81 4.6 Which types of networks are currently used in practice? 83 Part II Theory 85 5 Splits and unrooted phylogenetic networks 87 5.1 Overview 87 5.2 Splits 88 5.3 Compatibility and incompatibility 90 5.4 Splits and clusters 91 5.5 Split networks 93 5.6 The canonical split network 97 5.7 Circular splits and planar split networks 102 5.8 Weak compatibility 105 5.9 The split decomposition 107 5.10 Representing trees in a split network 121 5.11 Comparing split networks 122 5.12 T-theory 122 6 Clusters and rooted phylogenetic networks 127 6.1 Overview 127 6.2 Clusters, compatibility and incompatibility 128 6.3 Hasse diagrams 132 6.4 Cluster networks 133 6.5 Rooted phylogenetic networks 138 6.6 The lowest stable ancestor 140 6.7 Representing trees in rooted networks 144 6.8 Hardwired and softwired clusters 146 6.9 Minimum rooted phylogenetic networks 149 6.10 Decomposability 150 6.11 Topological constraints on rooted networks 156 6.12 Cluster containment in rooted networks 168 6.13 Tree containment 171 6.14 Comparing rooted networks 171 Part III Algorithms and applications 185 7 Phylogenetic networks from splits 187 7.1 The convex hull algorithm 187 7.2 The circular network algorithm 190 8 Phylogenetic networks from clusters 193 8.1 Cluster networks 193 8.2 Divide-and-conquer using decomposition 194 8.3 Galled trees 198 8.4 Galled networks 201 8.5 Level-k networks 210 9 Phylogenetic networks from sequences 216 9.1 Condensed alignments 216 9.2 Binary sequences and splits 216 9.3 Parsimony splits 218 9.4 Median networks 219 9.5 Quasi-median networks 223 9.6 Median-joining 227 9.7 Pruned quasi-median networks 232 9.8 Recombination networks 233 9.9 Galled trees 240 10 Phylogenetic networks from distances 250 10.1 Distances and splits 250 10.2 Minimum spanning networks 251 10.3 Split decomposition 251 10.4 Neighbor-net 254 10.5 T-Rex 261 11 Phylogenetic networks from trees 265 11.1 Consensus split networks 265 11.2 Consensus super split networks for unrooted trees 268 11.3 Distortion-filtered super split networks for unrooted trees 273 11.4 Consensus cluster networks for rooted trees 274 11.5 Minimum hybridization networks 275 11.6 Minimum hybridization networks and galled trees 285 11.7 Networks from multi-labeled trees 287 11.8 DLT reconciliation of gene and species trees 289 12 Phylogenetic networks from triples or quartets 300 12.1 Trees from rooted triples 300 12.2 Level-k networks from rooted triples 302 12.3 The quartet-net method 308 13 Drawing phylogenetic networks 312 13.1 Overview 312 13.2 Cladograms for rooted phylogenetic trees 312 13.3 Cladograms for rooted phylogenetic networks 316 13.4 Phylograms for rooted phylogenetic trees 323 13.5 Phylograms for rooted phylogenetic networks 324 13.6 Drawing rooted phylogenetic networks with transfer edges 327 13.7 Radial diagrams for unrooted trees 328 13.8 Radial diagrams for split networks 329 14 Software 332 14.1 SplitsTree 332 14.2 Network 333 14.3 TCS 334 14.4 Dendroscope 334 14.5 Other programs 335 Glossary 338 References 343 Index 358 [ Last edited by 1949stone on 2013-12-17 at 12:38 ] |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Phylogenetic_Networks.pdf
2013-12-17 12:33:29, 6.73 M
» 猜你喜欢
筑牢营养安全线:以精准检测,护健康基石
已经有0人回复
推荐一些20种氨基酸检测的实际应用案例
已经有0人回复
化学工程及工业化学论文润色/翻译怎么收费?
已经有77人回复
不合理蛙科研实验中的趣事:实验器材的 “乌龙”
已经有0人回复
不合理蛙科研实验中的趣事:和实验材料的 “斗智斗勇”
已经有0人回复
蛋白质检测:精准分析,解锁生物分子的密码
已经有0人回复
不合理蛙科研实验之小鼠实验:严谨设计,解析生命机制的重要载体
已经有0人回复
不合理蛙科研实验之重金属检测:精准筛查,守护健康与环境的防线
已经有0人回复
不合理蛙科研实验之“蛙测重金属我背锅三千”
已经有0人回复
不合理蛙科研实验之“鼠逃三次我发三篇SCI”
已经有0人回复
20楼2015-01-15 22:30:34
简单回复
jinhx872楼
2013-12-17 13:11
回复
五星好评 顶一下,感谢分享!
2013-12-17 16:06
回复
五星好评 顶一下,感谢分享!
gooo684楼
2013-12-17 16:46
回复
五星好评 











2013-12-18 06:42
回复
五星好评 顶一下,感谢分享!
loriy6楼
2013-12-18 09:30
回复
三星好评 顶一下,感谢分享!
2014-01-14 23:39
回复
五星好评 顶一下,感谢分享!
zkrahfy8楼
2014-02-06 14:34
回复
五星好评 顶一下,感谢分享!
小仙女38669楼
2014-04-05 15:45
回复
五星好评 顶一下,感谢分享!
yypcnbe10楼
2014-05-15 21:41
回复
五星好评 顶一下,感谢分享!
59730760711楼
2014-05-27 20:38
回复
五星好评 顶一下,感谢分享!
laqiwe12楼
2014-05-30 22:14
回复
五星好评 顶一下,感谢分享!
zkrahfy13楼
2014-07-13 21:53
回复
顶一下,感谢分享!
丛海燕14楼
2014-09-02 17:10
回复
五星好评 顶一下,感谢分享!







回复此楼