| 查看: 646 | 回复: 5 | |||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||
[交流]
积分的问题 已有1人参与
|
|||
| 已知E|g'(x)|<∞,x的密度函数为f(x),书上说有:E[g'(x)]=∫g'(x)f(x) dx=∫f(x)dg(x)=f(x)g(x)| -∫g(x)df(x)= -∫g(x)df(x)积分上下限是负无穷到正无穷,想问为什么f(x)g(x)|=f(∞)g(∞)-f(-∞)g(-∞)=0?是可以由已知的E|g'(x)|<∞可以推出的吗? |
» 猜你喜欢
论文终于录用啦!满足毕业条件了
已经有5人回复
2025年遐想
已经有4人回复
投稿Elsevier的杂志(返修),总是在选择OA和subscription界面被踢皮球
已经有8人回复
自然科学基金委宣布启动申请书“瘦身提质”行动
已经有4人回复
求个博导看看
已经有18人回复
lzz654321
木虫 (著名写手)
凑活
- 应助: 15 (小学生)
- 金币: 4792.9
- 散金: 174
- 红花: 28
- 帖子: 2003
- 在线: 546.9小时
- 虫号: 2405403
- 注册: 2013-04-07
- 性别: GG
- 专业: 金融学
2楼2013-10-28 18:04:00
lzz654321
木虫 (著名写手)
凑活
- 应助: 15 (小学生)
- 金币: 4792.9
- 散金: 174
- 红花: 28
- 帖子: 2003
- 在线: 546.9小时
- 虫号: 2405403
- 注册: 2013-04-07
- 性别: GG
- 专业: 金融学
4楼2013-10-31 22:41:25
lzz654321
木虫 (著名写手)
凑活
- 应助: 15 (小学生)
- 金币: 4792.9
- 散金: 174
- 红花: 28
- 帖子: 2003
- 在线: 546.9小时
- 虫号: 2405403
- 注册: 2013-04-07
- 性别: GG
- 专业: 金融学
6楼2013-11-01 23:07:11







回复此楼