24小时热门版块排行榜    

查看: 569  |  回复: 1

81879167

新虫 (初入文坛)

[求助] 求解一个运筹学的题目!英文,中文版本均有!急求!

遇到作业不会做,题目意思理解不了!希望有高手能指点一些!
For the maintenance department of a logistic campany, there is the problem to determine the optimal number of employees. The reason for that is the unsteady demand for services – the number of repairs as well as the number of employees per repair is different from day to day.
Based on a simulation, the optimal number of employees should be determined using the expiriences from the past. The following information are given:
Number of repairs per Day   0        1          2         3         4            5          6
Likelihood                          0,159  0,161   0,067   0,156   0,159      0,136    0,162

Furthermore, the following is known about the type of repair:
Type of Repair   Small repair              Medium repair                Huge repair
Likelihood               0,809                        0,042                           0,149

Additionally, it is known that a small repair needs three employees per day, a medium repair five and a huge repair needs seven employees.
Furthermore, you know:
a) In 60% of all cases where employees have to do a small repair the staff is so early back that they can do once either a further small or medium repair at the same day.
b) In 20% of all cases where employees have to do a medium repair the staff is so early back that they can do once a further small repair at the same day.
1. Explain firstly the concept with which you implement the dependencies in a) und b) within a simulation framework.
2. Using that concept simulate the workload of the maintenance department for 365 days and determine the following values:
o minimum of required employees per day
o average of required employees per day
o maximum of required employees per day
o average number of repairs per day
o likelihood for at least 10 resp. at most 15 employees per day
3. Which recommendations you can give to the department manager based on the results of your simulation?
4. How do these recommendation change if the dependencies are not considered?

有没有学数学的童鞋啊,帮我做个题目啊。。一个关于修车厂员工人数的题目。。比如一家修车厂要根据过去统计的每天业务量来确定员工人数。每天修车次数0,1,2,3,4,5,6的概率为0.159,0.161,0.067,0.156,0.159,0.136,0.162。另外小修,中修,大修的概率分别为0.809,0.042,0.149。小,中,大所需人数为3,5,7人。另外,A)60%的情况一次小修完成之后还能继续在同一天继续做一次小修或者中修。B) 20%的情况下一次中修完成之后还能继续做一次小修。问题是怎么对情况A和B进行数学建模。有没有童鞋会做这个啊。。感谢不尽啊!!
回复此楼

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

feixiaolin

荣誉版主 (文坛精英)

优秀版主

【答案】应助回帖

感谢参与,应助指数 +1
骨干是马尔柯夫链。
A)60%的情况一次小修完成之后还能继续在同一天继续做一次小修或者中修。
B) 20%的情况下一次中修完成之后还能继续做一次小修。
还要考虑情况 C),大修之后,没有机会小修或中修。
2楼2013-09-09 16:33:11
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 81879167 的主题更新
信息提示
请填处理意见