24小时热门版块排行榜    

查看: 2168  |  回复: 14

freejx

新虫 (初入文坛)

引用回帖:
10楼: Originally posted by pippi6 at 2013-07-26 16:21:54
对不起,是我看错了。向你道歉!...

没事没事,说不上啥道不道歉的。解释清了就好。
我只是 急着问这题,
第一题二楼的老师大概说了一下,第二题求解答,谢谢大家
11楼2013-07-26 18:01:18
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

hank612

至尊木虫 (著名写手)

【答案】应助回帖

★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★
freejx: 金币+26, ★★★★★最佳答案, 非常感谢 2013-07-27 05:22:41
freejx: 金币+2, ★★★★★最佳答案 2013-07-27 16:35:57
引用回帖:
11楼: Originally posted by freejx at 2013-07-26 18:01:18
没事没事,说不上啥道不道歉的。解释清了就好。
我只是 急着问这题,
第一题二楼的老师大概说了一下,第二题求解答,谢谢大家...

I would like to reply in english, as slow in typing chinese.

all of these will be the application of Lebesgue’s Dominated Convergence Theorem.

1)
Int[ (1+x/n)^n * e^{-2x}, 0, n ] = Int[ f_n(x), 0, \infty]
where f_n(x)= Character(x, [0,n]) *  (1+x/n)^n * e^{-2x} , which is pointwise convergent to e^{-x}.  Now show that f_n(x) <=  e^{-0.5 x}. Or, you only need to show that   when t=x/n, 1+t < e^{1.5t} for all t>0.
Then since F(x)=e^{-0.5 x} is integrable on (0, infty), so the limit can be moved into the integral and the answer is int( e^{-x} , 0, \infty)=1.

2)let t=x/n. then it becomes int[sin(t)*n/ (1+t)^n; 0, infty].
int[sin(t)*n/ (1+t)^n] = (integral by parts) = -n* sint /(1+t)^{n-1} /(n-1)
+ n /(n-1) Int[ cos(t)/(1+t)^{n-1}] The first part, the function -n* sint /(1+t)^{n-1} /(n-1) evaluates to 0 at 0 and infty. The second integral Int[ cos(t)/(1+t)^{n-1}; 0, infty] is absolutely less than  Int[ 1/(1+t)^{n-1}; 0, infty]= 1/(n-2).
So combine together, and let n go to infty, the answer is 0.

3). Notice that the function sin(t)/t is continuous over R and is bounded by 1. therefore, the integral is directly bounded by 1/(1+x^2). Therefore, the limit can be taken inside the integral, and it becomes Int[ 1/(1+x^2); 0, infty] = pi/2.

4) it has anti-derivative arctan(nx). arctan(nx) at infty is pi/2. arctan(nx) at a depends on a. If a is positive, then the value is pi/2. If a=0, then the value is 0; if a is negative, then the value is -pi/2.
So by subtraction, you will see that there are three answers depending the sign of a: 0, pi/2, and pi.

答案: (1): 1. (2): 0.  (3): pi/2. (4): o or pi/2 or pi.
We_must_know. We_will_know.
12楼2013-07-27 03:03:15
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

freejx

新虫 (初入文坛)

引用回帖:
12楼: Originally posted by hank612 at 2013-07-27 03:03:15
I would like to reply in english, as slow in typing chinese.

all of these will be the application of Lebesgue’s Dominated Convergence Theorem.

1)
Int = Int
where f_n(x)= Character(x, ) *   ...

谢谢,我还有个问题,第一题的(7)怎么证明?
13楼2013-07-27 05:24:29
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

hank612

至尊木虫 (著名写手)

引用回帖:
13楼: Originally posted by freejx at 2013-07-27 05:24:29
谢谢,我还有个问题,第一题的(7)怎么证明?...

Int [ x e^{-x^2} ] = 1/2 * e^{-x^2} + C
这个不定积分有原函数的,自然可积啦。
We_must_know. We_will_know.
14楼2013-07-27 13:24:23
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

freejx

新虫 (初入文坛)

引用回帖:
14楼: Originally posted by hank612 at 2013-07-27 13:24:23
Int  = 1/2 * e^{-x^2} + C
这个不定积分有原函数的,自然可积啦。...

非常感谢
15楼2013-07-27 16:35:27
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 freejx 的主题更新
信息提示
请填处理意见