24小时热门版块排行榜    

查看: 2178  |  回复: 14
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

freejx

新虫 (初入文坛)

[求助] 请教各位老师几个关于勒贝格测度的问题,谢谢。金币全部奉上

我是学情报的,这玩意实在搞不懂,智商是硬伤啊
1.判断之下的正确与否,错的说明理由,对的证明

2.计算下列式的值


[ Last edited by freejx on 2013-7-23 at 11:37 ]
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

hank612

至尊木虫 (著名写手)

【答案】应助回帖

★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★
freejx: 金币+26, ★★★★★最佳答案, 非常感谢 2013-07-27 05:22:41
freejx: 金币+2, ★★★★★最佳答案 2013-07-27 16:35:57
引用回帖:
11楼: Originally posted by freejx at 2013-07-26 18:01:18
没事没事,说不上啥道不道歉的。解释清了就好。
我只是 急着问这题,
第一题二楼的老师大概说了一下,第二题求解答,谢谢大家...

I would like to reply in english, as slow in typing chinese.

all of these will be the application of Lebesgue’s Dominated Convergence Theorem.

1)
Int[ (1+x/n)^n * e^{-2x}, 0, n ] = Int[ f_n(x), 0, \infty]
where f_n(x)= Character(x, [0,n]) *  (1+x/n)^n * e^{-2x} , which is pointwise convergent to e^{-x}.  Now show that f_n(x) <=  e^{-0.5 x}. Or, you only need to show that   when t=x/n, 1+t < e^{1.5t} for all t>0.
Then since F(x)=e^{-0.5 x} is integrable on (0, infty), so the limit can be moved into the integral and the answer is int( e^{-x} , 0, \infty)=1.

2)let t=x/n. then it becomes int[sin(t)*n/ (1+t)^n; 0, infty].
int[sin(t)*n/ (1+t)^n] = (integral by parts) = -n* sint /(1+t)^{n-1} /(n-1)
+ n /(n-1) Int[ cos(t)/(1+t)^{n-1}] The first part, the function -n* sint /(1+t)^{n-1} /(n-1) evaluates to 0 at 0 and infty. The second integral Int[ cos(t)/(1+t)^{n-1}; 0, infty] is absolutely less than  Int[ 1/(1+t)^{n-1}; 0, infty]= 1/(n-2).
So combine together, and let n go to infty, the answer is 0.

3). Notice that the function sin(t)/t is continuous over R and is bounded by 1. therefore, the integral is directly bounded by 1/(1+x^2). Therefore, the limit can be taken inside the integral, and it becomes Int[ 1/(1+x^2); 0, infty] = pi/2.

4) it has anti-derivative arctan(nx). arctan(nx) at infty is pi/2. arctan(nx) at a depends on a. If a is positive, then the value is pi/2. If a=0, then the value is 0; if a is negative, then the value is -pi/2.
So by subtraction, you will see that there are three answers depending the sign of a: 0, pi/2, and pi.

答案: (1): 1. (2): 0.  (3): pi/2. (4): o or pi/2 or pi.
We_must_know. We_will_know.
12楼2013-07-27 03:03:15
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 15 个回答

lynzhung

铁虫 (小有名气)

【答案】应助回帖

★ ★
感谢参与,应助指数 +1
freejx: 金币+2, 有帮助 2013-07-23 20:58:16
1,2,3,错,其余都对。
1,2错的理由是0测集不是空集,比如{1}的Lebsgue测度为0 ,但是显然不是空集。
测度为0的集合元素可以是可数或者不可数个。
3,在0点附近不可以积分。
计算,直接使用Lebesguage控制收敛定理
2楼2013-07-23 14:59:32
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

freejx

新虫 (初入文坛)

引用回帖:
2楼: Originally posted by lynzhung at 2013-07-23 14:59:32
1,2,3,错,其余都对。
1,2错的理由是0测集不是空集,比如{1}的Lebsgue测度为0 ,但是显然不是空集。
测度为0的集合元素可以是可数或者不可数个。
3,在0点附近不可以积分。
计算,直接使用Lebesguage控制收敛定 ...

谢谢。但是答案上是5和7对,其他都是错。而且对的也要证明过程
3楼2013-07-23 20:57:23
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

lynzhung

铁虫 (小有名气)

看错了!恩,但是6应该是对的吧!证明过程打起来有点麻烦!其实这这些问题不难的!自己好好算一下吧
4楼2013-07-23 22:58:51
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
信息提示
请填处理意见