²é¿´: 11099  |  »Ø¸´: 313
¡¾½±Àø¡¿ ±¾Ìû±»ÆÀ¼Û252´Î£¬×÷ÕßPurelandÔö¼Ó½ð±Ò 200.2 ¸ö
µ±Ç°Ö»ÏÔʾÂú×ãÖ¸¶¨Ìõ¼þµÄ»ØÌû£¬µã»÷ÕâÀï²é¿´±¾»°ÌâµÄËùÓлØÌû

[×ÊÔ´] ·ÖÏí¡ª¡ªÄÉÃ×µç×Óѧ£ºÄÉÃ×Ïß¡¢·Ö×Óµç×ÓѧÓëÄÉÃ×Æ÷¼þ£¨Ó¢Îİ棩


Krzysztof Iniewski, ¡°Nanoelectronics: Nanowires, Molecular Electronics, and Nanodevices¡±
Mc Graw |  English | 2010 | ISBN: 0071664483 | 560 pages | PDF | 7,2 MB

The latest advances in nanoelectronics
This definitive volume addresses the state of the art in nanoelectronics, covering nanowires, molecular electronics, and nanodevices.
Written by global experts in the field, Nanoelectronics discusses cutting-edge techniques and emerging materials, such as carbon nanotubes and quantum dots. This pioneering work offers a comprehensive survey of nanofabrication options for use in next-generation technologies.

Nanoelectronics covers:

* Electrical properties of metallic nanowires
* Electromigration defect nucleation in damascene copper interconnect lines
* Carbon nanotube interconnects in CMOS integrated circuits
* Printed organic electronics
* One-dimensional nanostructure-enabled chemical sensing
* Cross-section fabrication and analysis of nanoscale device structures and complex organic electronics
* Microfabrication and applications of nanoparticle-doped conductive polymers
* Single-electron conductivity in organic nanostructures for transistors and memories
* Synthesis of molecular bioelectronic nanostructures
* Nanostructured electrode materials for advanced Li-ion batteries
* Quantum-dot devices based on carbon nanotubes
* Carbon nanotubes as electromechanical actuators
* Low-level nanoscale electrical measurements and ESD
* Nanopackaging
Contents
List of Authors . . . . . . . . . . . . . . . . . . . . . . . . xi
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Part I Nanowires
1 Electrical Properties of Metallic Nanowires
for Nanoelectronic Applications . . . . . . . . . . . . . 3
Carmen M. Lilley and Qiaojian Huang
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Electrical Resistivity of Metallic Nanowires . . . . 7
1.3 Failure Properties of Metallic Nanowires . . . . . 16
1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 23
2 Texture and Microstructure Dependence of
Electromigration Defect Nucleation in Damascene Cu
Interconnect Lines Studied In Situ by EBSD . . . . . 29
Kabir Mirpuri, Jerzy Szpunar, and Horst Wendrock
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Electromigration . . . . . . . . . . . . . . . . . . . . 31
2.3 Texture in Metals . . . . . . . . . . . . . . . . . . . . 33
2.4 Experimental Setup . . . . . . . . . . . . . . . . . . . 42
2.5 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.8 Failure Mechanism . . . . . . . . . . . . . . . . . . . 53
3 Carbon Nanotube Interconnects in CMOS
Integrated Circuits . . . . . . . . . . . . . . . . . . . . . . 61
Gael Close
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Trends in Interconnect Scaling . . . . . . . . . . . . 63
3.3 Carbon Nanotube Interconnects . . . . . . . . . . . 69
3.4 CMOS Platform for Benchmarking Carbon
Nanotube Interconnects . . . . . . . . . . . . . . . . 79
3.5 On-Chip Performance Analysis of Multiwall
Carbon Nanotube Interconnects . . . . . . . . . . . 84
3.6 Conclusion and Outlook . . . . . . . . . . . . . . . 87
4 Progresses and Challenges of Nanowire
Integrated Circuitry . . . . . . . . . . . . . . . . . . . . . 93
Zhiyong Fan, Johnny C. Ho, and Ali Javey
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 Synthesis of Single-Crystalline Nanowires . . . . 94
4.3 Characterization of Nanowires . . . . . . . . . . . 97
4.4 Nanowire Assembly . . . . . . . . . . . . . . . . . . 105
4.5 Printable Nanowire Arrays for Electronics,
Optoelectronics, and Sensors . . . . . . . . . . . . . 115
4.6 Conclusion and Outlook . . . . . . . . . . . . . . . 123
Part II Molecular Electronics
5 Printed Organic Electronics: From Materials
to Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Manuela La Rosa, Nunzia Malagnino, Alessandro Marcellino,
Donata Nicolosi, Luigi Occhipinti, Fabrizio Porro, Giovanni
Sicurella, Raffaele Vecchione, Luigi Fortuna, Mattia Frasca,
and Elena Umana
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 131
5.2 Materials for Organic Electronics . . . . . . . . . . 133
5.3 Stamp-Based Fabrication Processes . . . . . . . . . 136
5.4 Organic Thin-Film Devices . . . . . . . . . . . . . . 143
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 155
6 One-Dimensional Nanostructure-Enabled
Chemical Sensing . . . . . . . . . . . . . . . . . . . . . . 161
Aihua Liu
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 161
6.2 Semiconducting Metal Oxide
Nanowire-Based Sensing . . . . . . . . . . . . . . . 162
6.3 Metal Oxide Nanotube-Based Sensing . . . . . . . 176
6.4 Polymer-Based Nanowires or Nanotubes
for Sensing . . . . . . . . . . . . . . . . . . . . . . . . 185
6.5 Metal Nanowire-Based Biosensing . . . . . . . . . 190
6.6 Concluding Remarks . . . . . . . . . . . . . . . . . . 191
6.7 Future Perspectives . . . . . . . . . . . . . . . . . . . 192
7 Cross-Section Fabrication and Analysis of Nanoscale
Device Structures and Complex Organic Electronics 203
David W. Steuerman and Erich C. Walter
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 203
7.2 Device Cross-Section Fabrication and
Imaging Considerations . . . . . . . . . . . . . . . . 205
7.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . 209
7.4 Future Opportunities and Conclusions . . . . . . 222
8 Microfabrication and Applications
of Nanoparticle-Doped Conductive
Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Bonnie L. Gray and Ajit Khosla
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 227
8.2 Fill Factor and Percolation Threshold . . . . . . . 229
8.3 Nanoparticle Shapes and Materials . . . . . . . . . 231
8.4 Conductive Nanocomposite Polymers
for Microsystems: Preparation and
Micropatterning . . . . . . . . . . . . . . . . . . . . . 235
8.5 Applications of Conductive Nanocomposite
Polymers in Microsystems . . . . . . . . . . . . . . 248
8.6 Summary and Future Directions . . . . . . . . . . . 256
9 Single-Electron Conductivity in Organic
Nanostructures for Transistors and
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Sandro Carrara
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 263
9.2 Transistors Working at 4 K . . . . . . . . . . . . . . 265
9.3 Room-Temperature Inorganic Transistors . . . . . 268
9.4 Room-Temperature Organic Transistors . . . . . . 272
9.5 Room-Temperature Memories with
Organic SETs . . . . . . . . . . . . . . . . . . . . . . . 277
9.6 The Patents . . . . . . . . . . . . . . . . . . . . . . . . 280
9.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 281
10 Recent Developments toward the Synthesis
of Supramolecular Bioelectronic
Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . 289
John D. Tovar, Stephen R. Diegelmann, and Brian D. Wall
10.1 ¡°Supramolecular Synthons¡± Used to Construct
Self-Assembled Materials . . . . . . . . . . . . . . 290
10.2 One-Dimensional Supramolecular Assemblies
of Pi-Electron Materials . . . . . . . . . . . . . . . 292
10.3 Electrically Conductive Polymers as
Biomaterials . . . . . . . . . . . . . . . . . . . . . . . 301
10.4 Peptide-Oligothiophene Conjugates for
Bionanostructures . . . . . . . . . . . . . . . . . . . 308
10.5 Concluding Remarks . . . . . . . . . . . . . . . . . 314
Part III Nanodevices
11 New Developments in Nanostructured Electrode
Materials for Advanced Li-Ion Batteries . . . . . . . . 321
Ying Wang, Chuan Cai, and Dongsheng Guan
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 321
11.2 Nanostructured Cathode Materials . . . . . . . . 323
11.3 Nanostructured Anode Materials . . . . . . . . . 338
11.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 348
12 Quantum-Dot Devices Based on
Carbon Nanotubes . . . . . . . . . . . . . . . . . . . . . 361
Ali Kashefian Naieni and Alireza Nojeh
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 361
12.2 Theory of Single-Electron Devices . . . . . . . . . 362
12.3 Fabrication of Quantum-Dot Devices
Based on Carbon Nanotubes . . . . . . . . . . . . 372
12.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 338
13 Individual Carbon Nanotubes as Electromechanical
Actuators: Simulations and Initial Experiments . . . 395
Tissaphern Mirfakhrai and John D. W. Madden
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 395
13.2 Theoretical and Simulation Work . . . . . . . . . 401
13.3 Experimental Studies on Actuation
in Individual Carbon Nanotubes . . . . . . . . . . 416
13.4 Conclusions and Future Directions . . . . . . . . 422
14 Low-Level Electrical Measurements at
the Nanoscale . . . . . . . . . . . . . . . . . . . . . . . . . 427
Jonathan Tucker
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 427
14.2 Nanotechnology Testing Overview . . . . . . . . 428
14.3 Low-Level Measurement Techniques
for Nanoscale Measurements . . . . . . . . . . . . 438
14.4 Electronic Transport Characteristics
of Gallium Nitride Nanowire-Based
Nanocircuits . . . . . . . . . . . . . . . . . . . . . . 473
14.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 478
15 Nano ESD: Electrostatic Discharge in the
Nanoelectronic Era . . . . . . . . . . . . . . . . . . . . . 481
Steven H. Voldman
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 481
15.2 Photomasks . . . . . . . . . . . . . . . . . . . . . . . 482
15.3 Magnetic Recording . . . . . . . . . . . . . . . . . . 486
15.4 MEMs . . . . . . . . . . . . . . . . . . . . . . . . . . 489
15.5 Transistors . . . . . . . . . . . . . . . . . . . . . . . . 497
15.6 Silicon Nanowires . . . . . . . . . . . . . . . . . . . 501
15.7 Carbon Nanotubes . . . . . . . . . . . . . . . . . . 501
15.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 502
16 Nanopackaging . . . . . . . . . . . . . . . . . . . . . . . . 509
James E. Morris
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 509
16.2 Nanoparticles . . . . . . . . . . . . . . . . . . . . . . 509
16.3 Carbon Nanotubes . . . . . . . . . . . . . . . . . . 513
16.4 Health and Environment . . . . . . . . . . . . . . . 518
16.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 519
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

Mc Graw |  English | 2010 | ISBN: 0071664483 | 560 pages | PDF | 7,2 MB
»Ø¸´´ËÂ¥

» ±¾Ìû¸½¼þ×ÊÔ´Áбí

  • »¶Ó­¼à¶½ºÍ·´À¡£ºÐ¡Ä¾³æ½öÌṩ½»Á÷ƽ̨£¬²»¶Ô¸ÃÄÚÈݸºÔð¡£
    ±¾ÄÚÈÝÓÉÓû§×ÔÖ÷·¢²¼£¬Èç¹ûÆäÄÚÈÝÉæ¼°µ½ÖªÊ¶²úȨÎÊÌ⣬ÆäÔðÈÎÔÚÓÚÓû§±¾ÈË£¬Èç¶Ô°æȨÓÐÒìÒ飬ÇëÁªÏµÓÊÏ䣺libolin3@tal.com
  • ¸½¼þ 1 : NanoelectronicsNanowires,MolecularElectronics,andNanodevices.pdf
  • 2013-05-02 07:48:07, 7.23 M

» ÊÕ¼±¾ÌûµÄÌÔÌùר¼­ÍƼö

²ÄÁÏ¿Æѧ×îÐÂÇ°ÑØÈȵã ÄÉÃ×¼¼ÊõÓëÄÜÔ´¼°Ä£Äâ Íò¾í¸óÖ®ËÑÉñ¼Ç ÄÉÃ×»úÀí
רҵµç×ÓÊé ÐÂÄÜÔ´ µç»¯Ñ§µçÔ´¡¢µçÔ´¹ÜÀí ¹úÍâרҵµç×ÓÊé2
¿Æ¼¼Ïà¹Ø »¯Ñ§¡¢»¯¹¤Óëҩѧ ÎÒϲ°®µÄ²ÄÁÏÀàÊé¼® ¸ß·Ö×ÓÏà¹Ø×ÊÁÏ
ÄÉÃ׿Ƽ¼ºÍÄÉÃײÄÁϵç×ÓÊé÷Ò÷Ñ Graphene & MTMs & PCs & Plasmonics Èí¼þѧϰÓëÂÛÎÄд×÷ ¾§ÌåÖƱ¸¼°²âÊÔ
Ì«ÑôÄܵç³Ø¹âµçÄ£Äâ ¾­µäÓëÏÖ´úÎïÀíѧ MEMSÓ봫ͳ»úе ¾­¼Ã
ÄÉÃ×ÉúÎïѧ µ¼µç¾ÛºÏÎïF Try the new Ò©Îï¿Æѧ
·ÖÏí¼´ÊÇ¿ìÀÖ ²ÄÁÏ books ½»²æѧ¿Æ-ÄÉÃײÄÁÏ
ÄÉÃ×ÎÄÏ× ÓÐÓÃ֪ʶ µç×ÓÊé

» ²ÂÄãϲ»¶

» ±¾Ö÷ÌâÏà¹ØÉ̼ÒÍƼö: (ÎÒÒ²ÒªÔÚÕâÀïÍƹã)

» ±¾Ö÷ÌâÏà¹Ø¼ÛÖµÌùÍƼö£¬¶ÔÄúͬÑùÓаïÖú:

ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

charles2000k

гæ (ÕýʽдÊÖ)


¡ï¡ï¡ï¡ï¡ï ÎåÐǼ¶,ÓÅÐãÍƼö

good
223Â¥2014-08-26 23:17:32
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
Ïà¹Ø°æ¿éÌøת ÎÒÒª¶©ÔÄÂ¥Ö÷ Pureland µÄÖ÷Ìâ¸üÐÂ
×î¾ßÈËÆøÈÈÌûÍƼö [²é¿´È«²¿] ×÷Õß »Ø/¿´ ×îºó·¢±í
[¿¼ÑÐ] ÎïÀí»¯Ñ§Ò»¶ÔÒ»¸¨µ¼ +3 ÁÖ´ódiao 2024-06-12 5/250 2024-06-14 20:57 by ÁÖ´ódiao
[»ù½ðÉêÇë] Nature 11ÈÕ·¢ÎÄ£¬ÖйúÖøÃûѧÕßÃdzÆÔì¼ÙÆȲ»µÃÒÑ +3 babu2015 2024-06-14 3/150 2024-06-14 19:34 by ÐÇ»ð12
[ÕÒ¹¤×÷] ½­Î÷Ë«·ÇÒ»±¾ºÍËÄ´¨Ë«Ò»Á÷¸ßУÈçºÎÑ¡Ôñ£¿ 5+6 º®É½ÇÃÖÓ 2024-06-12 19/950 2024-06-14 17:46 by SNaiL1995
[»ù½ðÉêÇë] ²©Ê¿ºó»ù½ðÐèÒª½áÌâÂ𣿠+8 zhouchuck 2024-06-13 8/400 2024-06-14 17:27 by liuyupu132
[ÂÛÎÄͶ¸å] Ͷ¸åʱÍü¼ÇÐÞ¸ÄÒ»×÷ +6 gll123456 2024-06-13 8/400 2024-06-14 17:07 by lihua129
[˶²©¼ÒÔ°] ˶²©¾ÞÓ¤£¬Ò²Ðí²Å¸Õ¸Õ¿ªÊ¼ +23 SNaiL1995 2024-06-12 56/2800 2024-06-14 17:00 by SNaiL1995
[ÂÛÎÄͶ¸å] ͶÁËһƪ4ÇøµÄSCI£¬Éó¸åÈËÒ»¸ö¾Ü¸å£¬Ò»¸öСÐÞ£¬±à¼­¸øÁË´óÐÞ¡£ +7 °²ÎÈ22123 2024-06-13 8/400 2024-06-14 14:43 by bear2007
[¿¼²©] É격ÕÒµ¼Ê¦ +4 ÊèÓ°ºáбˮÇådz3 2024-06-13 6/300 2024-06-14 14:31 by zxl_1105
[»ù½ðÉêÇë] ÓÐûÓлúеµÄÇ°±²·ÖÏíÒ»ÏÂÆÀÉϺ£ÓŶ¼ÊÇʲô³É¹û°¡ +6 wulala800 2024-06-10 6/300 2024-06-14 11:19 by kyois8782
[ÂÛÎÄͶ¸å] ·µÐÞËÍÉóºóµÚ3Ì죬ֻÓÐÔ­À´µÄÒ»¸öÉó¸åÈ˽ÓÊÜÁËÉó¸å£¬ÆäËûÁ½¸öÓÐûÓпÉÄÜÅÜ·£¿ 60+5 huanpo116 2024-06-08 9/450 2024-06-14 10:01 by bobvan
[½Ìʦ֮¼Ò] Çë¸÷λÀÏʦ̸̸Éí±ß·ÇÉý¼´×ßµÄÀý×Ó +10 Lucas1121 2024-06-09 25/1250 2024-06-13 21:52 by Lucas1121
[»ù½ðÉêÇë] Á¬ÐøÁ½Äêҽѧ¿ÚÇàÄêÏîÄ¿³õÉóÌå»á +11 ½ø»÷µÄÈÙÒ« 2024-06-09 18/900 2024-06-13 17:27 by ½ø»÷µÄÈÙÒ«
[Óлú½»Á÷] Ô­ÁÏ·´Ó¦ÍêÁË£¬Ôõô֪µÀÊDzúÎﻹÊÇÖмäÌå +6 СºúÔÚŬÁ¦ 2024-06-11 8/400 2024-06-13 13:33 by 091602
[¿¼²©] ²©µ¼ÍƼö +6 ÂäÓê³Ô¼¦µ° 2024-06-07 8/400 2024-06-13 10:07 by keyaner23
[½Ìʦ֮¼Ò] ¸±½ÌÊÚÌø²Û +24 €Ðì·ïÄê 2024-06-07 26/1300 2024-06-13 08:36 by Fanninger
[ÂÛÎÄͶ¸å] Ħ²ÁÄ¥ËðÂÛÎÄͶ¸å +3 jmysan 2024-06-12 3/150 2024-06-13 08:36 by À³ÒðÈóÉ«
[»ù½ðÉêÇë] ²©ºóÌØÖúÕâÖܳö½á¹ûÂð£¿ÍùÄ궼ÊÇɶʱºò°¡£¿ +13 jsqy 2024-06-12 17/850 2024-06-12 19:55 by Lynn212
[˶²©¼ÒÔ°] ½»ÓÑ +5 xkkl 2024-06-08 6/300 2024-06-12 14:47 by xkkl
[ÂÛÎÄͶ¸å] water research״̬×Éѯ 5+3 Flyyawa 2024-06-10 6/300 2024-06-11 09:45 by bobvan
[¿¼²©] Ï£ÍûÄÜ25²©Ê¿Èëѧ£¬¿ÉÌáÇ°Ò»Äê×ö¿ÆÑÐÖúÀí +3 ¸É·¹°æС̫Ñô 2024-06-09 7/350 2024-06-10 00:05 by ¸É·¹°æС̫Ñô
ÐÅÏ¢Ìáʾ
ÇëÌî´¦ÀíÒâ¼û