24小时热门版块排行榜    

查看: 1186  |  回复: 8
本帖产生 1 个 翻译EPI ,点击这里进行查看
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

哟哟william

木虫 (小有名气)

[求助] 小段英文翻译,求助。各路大神速来呀!!!

To understand the reason for the superior electrochemical performance
of the sulfur–carbon composite synthesized by the in
situ sulfur-deposition route, EIS measurements were carried out
with the coin cells. The Nyquist profiles of the pure sulfur and
sulfur–carbon composite cathodes and the equivalent circuits are
shown in Fig. 8. Re refers to the resistance of electrolyte, Rct refers
to the charge transfer resistance between the interfaces of carbon/
sulfur/electrolyte, Wo refers to the Warburg impedance, and
CPE refers to the constant phase element [23]. The resistance of
electrolyte was estimated from the intersection of the front end of
semicircles with the Z axis, which is similar for both the cathodes.
The diameter of the impedance semicircles is related to the charge
transfer resistance, which is a measure of the difficulty involved
for charges crossing the boundary between the electrode and electrolyte.
Before cycling, the sulfur–carbon composite cathode has
a slightly lower charge transfer resistance value than the pure sulfur
cathode, which is expected considering its higher first discharge
capacity compared to that of the pure sulfur cathode. The close contact
between the conductive carbon black and the insulating sulfur
lowers the resistance for electrons transferring across the interface
between them. In the subsequent cycles (1st, 25th, and 50th), the
charge-transfer resistance of the pure sulfur cathode grows much
larger than that found with the sulfur–carbon composite cathode.
The main reason for this is the porous structure of the cycled pure
sulfur cathode. Electrons passing across the boundary between conductive
carbon and active material are impeded by the irreversible
formation of the Li2S layer in the pores [10]. The EIS measurements
thus reveal that the sulfur–carbon composite cathode exhibits better
electronic conductivity and lithium-ion transport than the pure
sulfur cathode due to the stable network structure of carbon black
wrapping around the sulfur. The impedance of the sulfur–carbon
composite after 50th cycles does not increase much, suggesting that
the network structure maintains its integrity during the cycling
process.

» 本帖@通知

» 猜你喜欢

just do it!!!
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

ruiyuan121

木虫 (著名写手)

【答案】应助回帖

★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★
哟哟william: 金币+40, ★★★★★最佳答案, 金币给你吧,呵呵,这么晚还帮我翻译,真是感谢你 2013-04-26 23:28:00
To understand the reason for the superior electrochemical performance of the sulfur–carbon composite synthesized by the in situ sulfur-deposition route, EIS measurements were carried out with the coin cells.
通过对纽扣电池进行电化学阻抗分析,来了解原位硫沉积法合成的碳硫复合物为什么具有良好的电化学特性。
The Nyquist profiles of the pure sulfur and sulfur–carbon composite cathodes and the equivalent circuits are shown in Fig. 8.
纯硫阴极电极和碳硫复合阴极电极的 Nyquist剖面和等效电路如图8所示。
Re refers to the resistance of electrolyte, Rct refers to the charge transfer resistance between the interfaces of carbon/ sulfur/electrolyte, Wo refers to the Warburg impedance, and CPE refers to the constant phase element [23].
其中,Re代表电解液的电阻,Rct代表碳/硫/电解液界面间电荷转移电阻,Wo代表瓦尔堡阻抗,CPE代表常相位角元件。
The resistance of electrolyte was estimated from the intersection of the front end ofsemicircles with the Z axis, which is similar for both the cathodes.与阴极电阻计算方法相似,电解液的电阻通过图线中半圆形曲线的前端与Z轴的交点确定。
The diameter of the impedance semicircles is related to the charge transfer resistance, which is a measure of the difficulty involved for charges crossing the boundary between the electrode and electrolyte.阻抗曲线的直径与电荷转移电阻有关,通过该值可以断定电荷穿越电极和电池液界面的难易程度。

Before cycling, the sulfur–carbon composite cathode has a slightly lower charge transfer resistance value than the pure sulfur cathode, which is expected considering its higher first discharge capacity compared to that of the pure sulfur cathode.
循环前,硫碳复合电极的电荷转移阻力值略小于纯硫电极,这是由于碳硫复合电极的首次放电容量比纯硫电极高。
The close contact between the conductive carbon black and the insulating sulfurlowers the resistance for electrons transferring across the interface between them.
导电炭黑与绝缘硫的紧密接触减小了两者界面间电子转移电阻。
In the subsequent cycles (1st, 25th, and 50th), the charge-transfer resistance of the pure sulfur cathode grows much larger than that found with the sulfur–carbon composite cathode.在随后的循环中(第1圈,第25圈,第50 圈),纯硫电极电荷转移电阻的增加程度要远大于碳硫复合物电极。
The main reason for this is the porous structure of the cycled pure sulfur cathode.
循环纯硫电极的多孔结构导致了这一现象的出现。
Electrons passing across the boundary between conductive carbon and active material are impeded by the irreversible formation of the Li2S layer in the pores [10].
在孔内单向生产的硫化锂层阻碍了电子在导电碳和活性材料之间的转移。
The EIS measurements thus reveal that the sulfur–carbon composite cathode exhibits better electronic conductivity and lithium-ion transport than the puresulfur cathode due to the stable network structure of carbon black wrapping around the sulfur.
电化学阻抗谱的测试结果显示,由于碳硫复合电极具有碳包裹硫的稳定网状结构,它的电子导电性以及锂离子的转移要比纯硫电极好。
The impedance of the sulfur–carbon composite after 50th cycles does not increase much, suggesting that the network structure maintains its integrity during the cycling process.
在50圈循环后,碳硫复合电极的阻抗并没有明显增加,说明在循环过程中网状结构保持完整。




参考……
苦尽甘来的甜能让人甜一辈子
9楼2013-04-26 23:18:57
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 9 个回答

ruiyuan121

木虫 (著名写手)

你是把一篇完整的论文分开求助翻译的啊。o(︶︿︶)o 唉

» 本帖已获得的红花(最新10朵)

苦尽甘来的甜能让人甜一辈子
2楼2013-04-26 22:04:33
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

哟哟william

木虫 (小有名气)

送红花一朵
引用回帖:
2楼: Originally posted by ruiyuan121 at 2013-04-26 22:04:33
你是把一篇完整的论文分开求助翻译的啊。o(︶︿︶)o 唉

哇,妹子你太聪明了
just do it!!!
3楼2013-04-26 22:05:21
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

ruiyuan121

木虫 (著名写手)

这次金币少,我就不翻译了
苦尽甘来的甜能让人甜一辈子
4楼2013-04-26 22:11:12
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
信息提示
请填处理意见