| 查看: 779 | 回复: 3 | ||
| 本帖产生 1 个 翻译EPI ,点击这里进行查看 | ||
rockinuk铁杆木虫 (职业作家)
|
[求助]
求教化学方面的文章翻译~(简要的解说,非精翻译)- Part 4.
|
|

2楼2013-01-28 01:54:21
![]() ![]() |
3楼2013-01-28 08:12:11
chemistry412
铜虫 (初入文坛)
- 翻译EPI: 1
- 应助: 0 (幼儿园)
- 金币: 128.6
- 帖子: 46
- 在线: 7.1小时
- 虫号: 257865
- 注册: 2006-06-04
- 性别: MM
- 专业: 无机纳米化学
【答案】应助回帖
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ...
phu_grassman: 金币+5, thanks for your timie 2013-02-01 21:05:00
rockinuk: 金币+100, 翻译EPI+1, ★★★★★最佳答案 2013-02-03 13:48:17
phu_grassman: 金币+5, thanks for your timie 2013-02-01 21:05:00
rockinuk: 金币+100, 翻译EPI+1, ★★★★★最佳答案 2013-02-03 13:48:17
|
我是学化学的,这里有些生物和别的学科的内容,我翻译的不是很好,水平有限,仅供参考! 发明专属条形码 All the coding schemes described herein are afflicted by one handicap or another. Thus while one can only marvel at the baroque elegance of Still’s original coding scheme, he and his colleagues must have sweated blood to get it to work. While less unwieldy, the metallic and optical barcodes, do not, as Still’s scheme does, inextricably link the code to what is on the particle. The digital DNA codes4-6 (see Box) are prone to contamination from templates not intended to be present in the labelling mixture. And so on. In short, there is plenty of room for other ideas. 这里提及的所有编码方案都会被这个或那个因素困扰,因此只有Still首创的密码方案才能有所成就,为此他和他的同事必须全力以赴地工作。但是,金属和光学条码不象Still的方案那样容易控制,它们像粒子一样并不紧密相连。数字DNA密码4-6容易被模板中未被标记的物质弄混等等。简单说,这种方法并不太可靠。 One very simple possibility, suggested by isotope ratios and insect pheromone blends, is to vary rations and insect pheromone blends, is to vary the amounts of just two different substances. This will not lead to very many codes as it stands, but this scheme could be used in the same way that isotope ratios are used to identify the provenance of ancient timbers and samples of cocaine.7,8 There is no reason, either, why different pairs of substances should not be used. 由同位素丰度和不同种昆虫外激素的混合联想到的一种非常简单的方案:改变同位素的含量和昆虫外激素的种类,也就是说改变两种物质的含量。这并不会形成太多的密码,但是这种方法应该会很有效,就像利用同位素的丰度可以用来鉴定古木的年代和可卡因的含量一样适用。任意两种物质均可。 Another possibility is to use the alternative configurations, R or S, of an asymmetric centre as the basis for a digital code. It is well known that some complex natural products ca have a significant number of a symmetric centres, and the framework of one of these molecules could be used for coding, with the code residing in a single molecule. Care would be residing in choosing a suitable framework, however, since in some cyclic natural products (eg steroids) ring formation will predispose some asymmetric centres towards one particular configuration. Alternatively, a complex code could be generated by connecting a small number of different monomers in a variety of different ways, in the same manner as branched carbohydrates. 另一种可能性就是使用一种不对称中心的不同构型,R或S作为基础或数字密码。众所周知一些复杂的天然产品有数目众多的对称中心,这个或这些分子的框架可以被用来标记—密码就存在于分子的结构之中。当然要慎重选择适合的结构:例如在一些可循环的天然化合物中(如甾族化合物)会有成环反应发生,这会形成分子的不对称中心,改变其结构。或者,可以通过不同方法联合一定数目的不同单体来形成复杂的密码。例如支化型的糖类的形成。 Perhaps the scheme with the greatest coding potential, however, is a tiny-dimensional array of several different coloured quantum dots. Fixing four different coloured dots to a 10×10 array, for example, would generate over 2000m patterns. 也许这种构想是最有前景的编码方式,但是,它是一定数目不同颜色量子点的一种小尺度的排列。假设有四种不同颜色的量子点以10×10方式排列,就可以产生2000种图案。 These are just three straightforward examples. I would bet money that there are other miniature barcoding schemes out there waiting to make more jaws drop in astonishment. 这里介绍的是3种非常简单的例子。我预计以后会出现令人意想不到的微型的条形码设计方案。 |
4楼2013-01-30 17:13:34













回复此楼

10