24小时热门版块排行榜    

查看: 1084  |  回复: 6

muruina

银虫 (初入文坛)

[求助] 神经网络对实验数据模拟求助

就是条件实验结果用训练神经网络,然后预测实验结果,如附件文献所示,但本人菜鸟不会用matlab建立神经网络,求高手帮忙,建立BP神经网络,并附上源程序。结果要的很急,求高手帮忙帮忙,不胜感激~~
回复此楼

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com
  • 附件 1 : 基于BP神经网络的生物质固定床热解气化过程模拟.pdf
  • 2012-10-31 22:21:50, 383.24 K

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

muruina

银虫 (初入文坛)

人工置顶
2楼2012-10-31 22:34:30
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

小徐同志

木虫 (正式写手)

不懂,还是帮楼主顶顶吧。挣金币的孩纸
3楼2012-10-31 23:25:52
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

csgt0

荣誉版主 (著名写手)

彩色挂图

【答案】应助回帖

★ ★ ★ ★
感谢参与,应助指数 +1
muruina: 金币+3 2012-11-05 09:47:03
fegg7502: 金币+1, 应助指数+1, 鼓励交流 2012-12-18 12:05:48
参见我的淘贴,当然开始的话你用nftool最好。
showmethemoney
4楼2012-11-01 09:48:20
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

youlinhuang

铁杆木虫 (著名写手)

【答案】应助回帖


fegg7502: 金币+1, 应助指数+1, 鼓励交流 2012-12-18 12:05:57
去搜搜BP神经网络的命令,在小木虫上有好多
努力奋斗!
5楼2012-12-17 14:05:03
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

qfqfqf

新虫 (初入文坛)

【答案】应助回帖

p=[227.3 68.3 1.6 45.2 28.0 13.32;195.2 67.8 0.5 66.3 27.3 7.12;243.2 64 1.5 46.0 31.8 13.44;303.7 42.6 0.8 52.0 31.0 11.20;154.4 29 0.9 76.7 27.8 4.77;129 40 0.9 62.0 30.8 8.29;205.2 43.9 0.9 62.0 28.6 8.44;751.1 438 2.2 45.5 28.6 13.34;792.3 477.8 0.7 56.4 28.8 9.69;757.4 439.8 1.5 44.0 32.6 14.27;631.4 324.1 0.1 51.9 31.9 11.27;645.4 318.8 0.9 71.4 29.4 5.92;692.6 421.3 0.8 59.9 31.5 8.99;769.4 411.7 0.9 56.6 30.4 10.16;1119.3 657 2.2 42.9 29.4 14.53;1317.7 734.1 0.4 54.8 30.5 10.14;1178.9 660.8 1.3 42.2 33.9 15.22;995.7 555.6 0.3 46.5 33.1 13.23;1112.2 643.6 1.0 63.6 30.7 7.85;1111.3 664.5 0.9 54.2 32.2 10.59;1240.3 647.2 0.8 53.0 32.5 11.02;1391.6 738.6 1.6 38.6 30.0 16.07;1799.8 836.4 0.3 54.9 31.1 10.39;1537.2 755.2 1.7 41.1 34.7 15.67;1250.2 686.1 2.4 45.9 33.5 13.53;1331.1 746.9 1.1 60.2 31.7 8.84;1310.5 771.9 1.1 60.2 31.7 8.84;1623.0 751.7 1.0 43.8 33.1 14.36;1341.0 681.2 1.5 41.5 29.8 14.87;1533.8 792.0 0.2 46.4 34.0 13.75;1313.8 738.2 1.4 40.4 35.0 15.90;919.2 517.3 2.6 46.5 33.9 13.23;1372.9 742.5 1.5 62.6 31.7 8.12;1344.9 747.0 0.9 42.7 35.0 14.81;1889.8 699.2 1.3 42.7 33.7 14.81;970.2 577.5 3.6 36.3 31.1 16.68;979.2 681.0 0.2 58.2 29.8 9.31;969.2 685.5 1.4 45.6 32.3 13.51;646.2 450.2 1.5 47.0 33.8 13.03;834.3 654.9 1.0 65.1 31.3 7.61;990.4 643.5 1.1 62.0 33.1 9.85;1317.1 596.0 0.8 49.3 32.9 12.19;145.8 421.9 2.7 42.2 27.1 14.32;76.3 500.0 0.2 63.7 29.6 7.76;159.1 509.1 1.7 48.4 31.3 12.45;204.6 379.3 0.8 52.1 31.8 11.22;72.5 471.4 0.6 70.7 30.7 6.36;39.8 464.1 1.5 59.9 33.4 9.11;141.7 423.9 0.9 59.2 31.7 8.97;131.4 144.9 1.1 57.0 29.3 9.64;26.4 167.6 0.3 66.9 29.6 6.86;117.8 171.9 1.6 49.3 30.7 12.16;143.8 144.6 0.9 54.8 31.5 10.40;77.5 157.2 1.0 67.2 30.3 6.95;64.4 155.4 0.7 54.2 32.3 9.57;107.8 143.6 0.9 59.4 31.3 9.11;30.7 0 0.7 56.7 28.9 9.66;32.0 0 1.3 61.1 30.2 8.38;70.8 0 2.1 50.6 30.0 11.44;144.1 0 1.1 56.4 31.3 9.85;65.3 0 0.7 66.7 30.0 7.14;41.1 0 0.5 46.7 31.6 8.53;35.6 0 0.7 62.1 31.0 8.30;29.5 0 0.6 57.7 28.7 9.50;15.6 0 0.3 63.2 29.4 7.89;67.1 0 1.1 52.5 29.7 11.02;227 0 0.5 58.4 31.1 9.38;71 0 0.7 66.8 29.7 7.10;28.1 0 0.7 42.7 31.1 7.37;57.4 0 0.5 62.7 30.3 8.09;49.4 0 0.5 58.5 28.3 9.16;31.6 0 0.3 67.7 29.0 6.76;82.8 0 1.5 54.4 29.5 10.43;220.9 0 0.5 57.7 30.6 9.16;61.1 0 0.8 67.4 29.6 6.84;41.6 0 0.7 65.0 30.8 7.44;61.5 0 0.5 60.5 30.1 8.55;122.2 22.2 0.5 54.1 28.0 10.43;91.9 22.6 0.5 63.9 28.9 7.79;144.3 21.5 1.8 48.7 30.7 12.37;199.8 14.8 0.8 65.2 29.4 7.73;87.7 10.6 0.6 71.7 29.1 5.89;78.5 13.3 0.9 62.2 30.3 8.11;107.0 14.2 0.6 64.1 29.8 7.66]';
t=[51;100.0;30.0;53.9;130.6;67.2;72.8; 40; 67.8; 31.1; 47.2; 124.4; 66.1; 76.7; 33; 72.8; 30.0; 40.6; 79.4; 52.8; 93.3; 29; 71.1; 29.4; 40.0; 88.3; 40.0; 48.9; 31; 72.2; 30.6; 52.2; 60.6; 40.0; 40.0; 38; 77.2; 33.3; 50.0; 52.2; 57.8; 48.3; 31; 74.4; 40.0; 48.9; 73.3; 70.6; 37; 83.3; 41.7; 55.0; 59.4; 60.6; 70.0; 48; 70.0; 41.1; 60.0; 75.6; 68.9; 86.1; 72; 65.0; 46.1; 56.7; 82.8; 96.7; 96.7; 41; 107.2; 50.0; 71.7; 83.9; 82.2; 115.6; 29; 80.6; 40.0; 78.9; 116.1; 67.2; 107.2;89.6]';
The element type "name" must be terminated by the matching end-tag "</name>".
Could not parse the file: c:\toolbox\ccslink\ccslink\info.xml
>> [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);  %将数据归一化
NodeNum1 =12; % 隐层节点
TypeNum = 1; % 输出节点
TF1 = 'tansig';
TF2 = 'tansig';
net=newff(minmax(pn),[NodeNum1,TypeNum],{TF1,TF2},'traingdx');
>>  net.trainParam.show=500;  
net.trainParam.epochs=500000; %最长步数  
net.trainParam.goal=0.01; %目标误差
net.trainParam.lr=0.3; %学习率  
net.trainParam.mc=0.9; %动量
net=train(net,pn,tn); %网络模拟仿真


这是一个神经网络建模的例子,你可以参考看一下
6楼2013-12-10 13:48:02
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

qfqfqf

新虫 (初入文坛)

【答案】应助回帖

p=[227.3 68.3 1.6 45.2 28.0 13.32;195.2 67.8 0.5 66.3 27.3 7.12;243.2 64 1.5 46.0 31.8 13.44;303.7 42.6 0.8 52.0 31.0 11.20;154.4 29 0.9 76.7 27.8 4.77;129 40 0.9 62.0 30.8 8.29;205.2 43.9 0.9 62.0 28.6 8.44;751.1 438 2.2 45.5 28.6 13.34;792.3 477.8 0.7 56.4 28.8 9.69;757.4 439.8 1.5 44.0 32.6 14.27;631.4 324.1 0.1 51.9 31.9 11.27;645.4 318.8 0.9 71.4 29.4 5.92;692.6 421.3 0.8 59.9 31.5 8.99;769.4 411.7 0.9 56.6 30.4 10.16;1119.3 657 2.2 42.9 29.4 14.53;1317.7 734.1 0.4 54.8 30.5 10.14;1178.9 660.8 1.3 42.2 33.9 15.22;995.7 555.6 0.3 46.5 33.1 13.23;1112.2 643.6 1.0 63.6 30.7 7.85;1111.3 664.5 0.9 54.2 32.2 10.59;1240.3 647.2 0.8 53.0 32.5 11.02;1391.6 738.6 1.6 38.6 30.0 16.07;1799.8 836.4 0.3 54.9 31.1 10.39;1537.2 755.2 1.7 41.1 34.7 15.67;1250.2 686.1 2.4 45.9 33.5 13.53;1331.1 746.9 1.1 60.2 31.7 8.84;1310.5 771.9 1.1 60.2 31.7 8.84;1623.0 751.7 1.0 43.8 33.1 14.36;1341.0 681.2 1.5 41.5 29.8 14.87;1533.8 792.0 0.2 46.4 34.0 13.75;1313.8 738.2 1.4 40.4 35.0 15.90;919.2 517.3 2.6 46.5 33.9 13.23;1372.9 742.5 1.5 62.6 31.7 8.12;1344.9 747.0 0.9 42.7 35.0 14.81;1889.8 699.2 1.3 42.7 33.7 14.81;970.2 577.5 3.6 36.3 31.1 16.68;979.2 681.0 0.2 58.2 29.8 9.31;969.2 685.5 1.4 45.6 32.3 13.51;646.2 450.2 1.5 47.0 33.8 13.03;834.3 654.9 1.0 65.1 31.3 7.61;990.4 643.5 1.1 62.0 33.1 9.85;1317.1 596.0 0.8 49.3 32.9 12.19;145.8 421.9 2.7 42.2 27.1 14.32;76.3 500.0 0.2 63.7 29.6 7.76;159.1 509.1 1.7 48.4 31.3 12.45;204.6 379.3 0.8 52.1 31.8 11.22;72.5 471.4 0.6 70.7 30.7 6.36;39.8 464.1 1.5 59.9 33.4 9.11;141.7 423.9 0.9 59.2 31.7 8.97;131.4 144.9 1.1 57.0 29.3 9.64;26.4 167.6 0.3 66.9 29.6 6.86;117.8 171.9 1.6 49.3 30.7 12.16;143.8 144.6 0.9 54.8 31.5 10.40;77.5 157.2 1.0 67.2 30.3 6.95;64.4 155.4 0.7 54.2 32.3 9.57;107.8 143.6 0.9 59.4 31.3 9.11;30.7 0 0.7 56.7 28.9 9.66;32.0 0 1.3 61.1 30.2 8.38;70.8 0 2.1 50.6 30.0 11.44;144.1 0 1.1 56.4 31.3 9.85;65.3 0 0.7 66.7 30.0 7.14;41.1 0 0.5 46.7 31.6 8.53;35.6 0 0.7 62.1 31.0 8.30;29.5 0 0.6 57.7 28.7 9.50;15.6 0 0.3 63.2 29.4 7.89;67.1 0 1.1 52.5 29.7 11.02;227 0 0.5 58.4 31.1 9.38;71 0 0.7 66.8 29.7 7.10;28.1 0 0.7 42.7 31.1 7.37;57.4 0 0.5 62.7 30.3 8.09;49.4 0 0.5 58.5 28.3 9.16;31.6 0 0.3 67.7 29.0 6.76;82.8 0 1.5 54.4 29.5 10.43;220.9 0 0.5 57.7 30.6 9.16;61.1 0 0.8 67.4 29.6 6.84;41.6 0 0.7 65.0 30.8 7.44;61.5 0 0.5 60.5 30.1 8.55;122.2 22.2 0.5 54.1 28.0 10.43;91.9 22.6 0.5 63.9 28.9 7.79;144.3 21.5 1.8 48.7 30.7 12.37;199.8 14.8 0.8 65.2 29.4 7.73;87.7 10.6 0.6 71.7 29.1 5.89;78.5 13.3 0.9 62.2 30.3 8.11;107.0 14.2 0.6 64.1 29.8 7.66]';
t=[51;100.0;30.0;53.9;130.6;67.2;72.8; 40; 67.8; 31.1; 47.2; 124.4; 66.1; 76.7; 33; 72.8; 30.0; 40.6; 79.4; 52.8; 93.3; 29; 71.1; 29.4; 40.0; 88.3; 40.0; 48.9; 31; 72.2; 30.6; 52.2; 60.6; 40.0; 40.0; 38; 77.2; 33.3; 50.0; 52.2; 57.8; 48.3; 31; 74.4; 40.0; 48.9; 73.3; 70.6; 37; 83.3; 41.7; 55.0; 59.4; 60.6; 70.0; 48; 70.0; 41.1; 60.0; 75.6; 68.9; 86.1; 72; 65.0; 46.1; 56.7; 82.8; 96.7; 96.7; 41; 107.2; 50.0; 71.7; 83.9; 82.2; 115.6; 29; 80.6; 40.0; 78.9; 116.1; 67.2; 107.2;89.6]';

>> [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);  %将数据归一化
NodeNum1 =12; % 隐层节点
TypeNum = 1; % 输出节点
TF1 = 'tansig';
TF2 = 'tansig';
net=newff(minmax(pn),[NodeNum1,TypeNum],{TF1,TF2},'traingdx');
>>  net.trainParam.show=500;  
net.trainParam.epochs=500000; %最长步数  
net.trainParam.goal=0.01; %目标误差
net.trainParam.lr=0.3; %学习率  
net.trainParam.mc=0.9; %动量
net=train(net,pn,tn); %网络模拟仿真

这是一个神经网络建模的例子, 你可以参考一下
7楼2013-12-10 13:49:21
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 muruina 的主题更新
信息提示
请填处理意见