|
|
[资源]
分享:核酸修饰石墨烯作生物感应器

Abstract
There is immense demand for complex nanoarchitectures based on graphene nanostructures in the fields of biosensing or nanoelectronics. DNA molecules represent the most versatile and programmable recognition element and can provide a unique massive parallel assembly strategy with graphene nanomaterials. Here we demonstrate a facile strategy for covalent linking of single stranded DNA (ssDNA) to graphene using carbodiimide chemistry and apply it to genosensing. Since graphenes can be prepared by different methods and can contain various oxygen containing groups, we thoroughly investigated the utility of four different chemically modified graphenes for functionalization by ssDNA. The materials were characterized in detail and the different DNA functionalized graphene platforms were then employed for the detection of DNA hybridization and DNA polymorphism by using impedimetric methods. We believe that our findings are very important for the development of novel devices that can be used as alternatives to classical techniques for sensitive and fast DNA analysis. In addition, covalent functionalization of graphene with ssDNA is expected to have broad implications, from biosensing to nanoelectronics and directed, DNA programmable, self-assembly.
Graphene design: Four different chemically modified graphenes were produced, characterized and used for the covalent immobilization of DNA probes. The impedimetric detection of DNA hybridization on these platforms was compared (see illustration). The best sensitivity and reproducibility was obtained when using electrochemically reduced graphene oxide. This platform was employed for the detection of DNA single nucleotide polymorphism. |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com
- 附件 1 : 201102850_ftp.pdf
2012-01-11 14:34:23, 916.85 K
» 收录本帖的淘帖专辑推荐
» 猜你喜欢
» 本主题相关价值贴推荐,对您同样有帮助:
|