24小时热门版块排行榜    

CyRhmU.jpeg
查看: 1859  |  回复: 6
当前主题已经存档。
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

may8205

银虫 (小有名气)

[交流] 请教:如何培养单晶?

各位虫子们,我现在做实验刚刚入门,因为是做配合物的,老板说最好培养出单晶来将来发文章好发一点,希望大家给我推荐一些如何培养单晶这方面的书籍。

另外弱弱的问一下:单晶是在我合成样品时培养出来呢 ,还是我已经合成出来样品后再通过其他方法长单晶?


请各位高手指点!
回复此楼

» 收录本帖的淘帖专辑推荐

有机太阳能电池 机械,材料,电子等 DSSC科研相关

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

vink

木虫 (著名写手)

金属配合物单晶的培养 本文来自:博研联盟论坛
方法一:挥发 本文来自:博研联盟论坛
用金属配合物的良溶剂将其溶解在小烧杯中,小烧杯的内表面越光滑单晶性越好,否则晶体形状不好缺陷多就会给后面的收单晶衍射数据带来麻烦,甚至会造成无法解晶体结构,那将是非常可惜的;烧杯用滤纸或塑料薄膜封口防止灰尘落入,同时减慢挥发速度,长出较好晶形的单晶,一般挥发性稍差的溶剂用滤纸,如,水等。静置至发现满意的晶体出现。 本文来自:博研联盟论坛
方法二:扩散 本文来自:博研联盟论坛
用金属配合物的良溶剂将其溶解在小烧杯或广口瓶中,塑料薄膜封口(用针戳3-5个小孔),放于盛有该金属配合物的挥发性不良溶剂(一般用乙醚)的大瓶子中。静置至发现满意的晶体出现。 本文来自:博研联盟论坛
方法三:分层 本文来自:博研联盟论坛
将金属的水溶液放于试管下层,配体的有机溶剂溶液放于试管上层,中间是水和有机溶剂的混合溶剂,封口。操作要小心,最好是用滴管伸进试管靠近液面缓慢滴加。静置至发现满意的晶体出现。 本文来自:博研联盟论坛
以上是我在培养配合物单晶常用的方法,一般是几种方法同时做,不是每种方法都能或总能培养出单晶,更多的是取决于配合物的结晶性好坏。总之就是多试:不同的温度、溶剂、混合溶剂的比例…… 本文来自:博研联盟论坛
化合物结晶的方法 本文来自:博研联盟论坛
本文来自:博研联盟论坛
化合物晶型的差异直接影响其稳定性/吸收的快慢/吸湿性/纯度等,不知大家这方面有什么心得? 本文来自:博研联盟论坛
本文来自:博研联盟论坛
结晶溶剂选择的一般原则及判定结晶纯度的方法。 本文来自:博研联盟论坛
结晶溶剂选择的一般原则:对欲分离的成分热时溶解度大,冷时溶解度小;对杂质冷热都不溶或冷热都易溶。沸点要适当,不宜过高或过低,如乙醚就不宜用。 或者利用物质与杂质在不同的溶剂中的溶解度差异选择溶剂 本文来自:博研联盟论坛
本文来自:博研联盟论坛
判定结晶纯度的方法:理化性质均一;固体化合物熔距≤ 2℃;TLC或PC展开呈单一斑点;HPLC或GC分析呈单峰,现代结晶学主要包括以下几个分支: 本文来自:博研联盟论坛
(1)晶体生成学(crystallogeny):研究天然及人工晶体的发生、成长和变化的过程与机理,以及控制和影响它们的因素。 本文来自:博研联盟论坛
(2)几何结晶学(gometrical crystallography):研究晶体外表几何多面体的形状及其间的规律性。 本文来自:博研联盟论坛
(3)晶体结构学(crystallology):研究晶体内部结构中质点排而的规律性,以及晶体结构的不完善性。 本文来自:博研联盟论坛
(4)晶体化学(crystallochemistry, 亦称结晶化学):研究晶体的化学组成与晶体结构以及晶体的物理、化学性质间关系的规律性。 本文来自:博研联盟论坛
(5)晶体物理学(crystallophysics):研究晶体的各项物理性质及其产生的机理。 本文来自:博研联盟论坛
本文来自:博研联盟论坛
溶剂方面:是制备结晶的关键所在。除yangdongyu提到的外,选择时可用少量各种不同溶剂试验其溶解度,包裹冷时和热时。一般首选乙醇。另外,尽可能选择单一溶剂,这样在大生产时也可较好的解决母液回收套用问题,降低成本。研究时,混合溶剂一般会有更好效果。还有安全,价廉也是考虑因素。 本文来自:博研联盟论坛
本文来自:博研联盟论坛
结晶条件:主要指温度,压力,是否搅拌等。温度很重要,一般我们都是低温冷藏,其实有时还需要高温保温!这主要需摸清其溶解度的关系在确定结晶温度。搅拌也是一个影响因素,他对结晶的晶型,结晶的快慢都有影响。 本文来自:博研联盟论坛
本文来自:博研联盟论坛
结晶纯度判定:都是一般的常规方法。不过都某些产品作的多了,可以凭经验的,如该样品经过多次重结晶后,看到应该出现的那种晶型,根据以往检测结果,其含量应该***不离十了,不信HPLC测去 本文来自:博研联盟论坛
另外选择梯度降温的条件对晶型和收率影响也较大 本文来自:博研联盟论坛
还有就是加晶种的时机:晶种加得过早,晶种溶解或产生的晶型一般较细;加的晚,则溶液里可能已经产生了晶核,造成结晶可能包裹杂质 本文来自:博研联盟论坛
重结晶方法是利用固体混合物中各组分在某种溶剂中的溶解度不同而使其相互分离。 本文来自:博研联盟论坛
进行重结晶的简单程序是先将不纯固体物质溶解于适当的热的溶剂中制成接近饱和的溶液,趁热过滤除去不溶性杂质,冷却滤液,使晶体自过饱和溶液中析出,而易溶性杂质仍 本文来自:博研联盟论坛
留于母液小,抽气过滤,将晶体从母液中分出,干燥后测定熔点,如纯度仍不符合要求,可再次进行重结晶,直至符合要求为止。 本文来自:博研联盟论坛
关于溶剂的选择 本文来自:博研联盟论坛
选择适当的溶剂对于重结晶操作的成功具有重大的意义,一个良好的溶剂必须符合下面儿个条件: 本文来自:博研联盟论坛
1、不与被提纯物质起化学反应 本文来自:博研联盟论坛
2、在较高温度时能溶解多量的被提纯物质而在室温或更低温度时只能溶解很少量; 本文来自:博研联盟论坛
3.对杂质的溶解度非常大或非常小,前一种情况杂质留于母液内,后一种情况趁热过滤时杂质被滤除; 本文来自:博研联盟论坛
4.溶剂的沸点不宜太低,也不宜过高。溶剂沸点过低时制成溶液和冷却结晶两步操作温差小,团体物溶解度改变不大,影响收率,而且低沸点溶剂操作也不方便。溶剂沸点过高,附着于晶体表面的溶剂不易除去。 本文来自:博研联盟论坛
5.能给出较好的结晶。 本文来自:博研联盟论坛
在几种溶剂都适用时,则应根据结晶的回收率、操作的难易、溶剂的毒性大小及是否易燃、价格高低等择优选用。 本文来自:博研联盟论坛
本文来自:博研联盟论坛
关于晶体的析出 本文来自:博研联盟论坛
过滤得到的滤液冷却后,晶体就会析出。用冷水或冰水迅速冷却并剧烈搅动溶液时,可得到颗粒很小的晶体,将热溶液在空温条件下静置使之缓缓冷却,则可得到均匀而较大的品体。 本文来自:博研联盟论坛
如果溶液冷却后晶体仍不析出,可用玻璃抹摩控液面下的容器壁,也可加入品种,或进一步降低溶液温度(用冰水或其它冷冻溶液冷却)。 本文来自:博研联盟论坛
如果溶液冷却后不析出品体而得到油状物时,可重新加热,至形成澄清的热溶液后,任其自行冷却,并不断用玻璃棒搅拌溶液,摩擦器壁或投人品种,以加速品体的析出。若仍有油状物开始忻出,应立即剧烈搅拌使油滴分散。 本文来自:博研联盟论坛
本文来自:博研联盟论坛
结晶过程的确是一门学问,国内在结晶方面专家首推天津大学化工学院的王静康院士。关于这方面的理论书籍不少,但是真正具体到每一类物质或每个物质,他们又不完全相同。共性的东西可能是理论上的,具体到每一类化合物的结晶过程的讨论可能对大家最有帮助。 本文来自:博研联盟论坛
溶剂的选择(单一或复合)、结晶温度,搅拌速度,搅拌方式,过饱和度的选择,养晶的时间,溶媒滴加的方式和速率等等,另外,在溶解、析晶、养晶这些过程中,上述温度、搅拌速度、时间多少、加入方式和速度还不完全一样。所以诸多因素叠加在一起,更是觉得难度大。 本文来自:博研联盟论坛
一般说来,先应该选择主要的条件,使结晶过程能够进行下去,得到晶体,然后再优化上述条件。条件成熟后,才能进行中试和生产。如果是进行理论研究可能着重点就不一样了。 本文来自:博研联盟论坛
如果是搞应用研究,那么溶剂相对来说不难选择,关键点在于使用这种溶剂能否找到过饱和点,过饱和点区间是不是好控制。如果过饱和点不好选,或过饱和度不够,很难析晶,更别提养晶了。这时可能要考虑复合溶媒,调整过饱和区间。所以我认为结晶过程最主要的是析晶过程,这时候各个条件的控制最为重要。控制好析晶过程,结晶过程大概完成60%。 本文来自:博研联盟论坛
养晶过程相对来说好控制一些,主要是按照优化参数,控制好条件,一般问题不大,放大过程中也基本不会出问题。 本文来自:博研联盟论坛
如果搞基础研究,物性还不是很清楚,结晶过程的研究可能花费的时间,精力较大。但一旦把整个过程搞明白,还是很有价值的。

金属配合物单晶的培养
方法一:挥发
用金属配合物的良溶剂将其溶解在小烧杯中,小烧杯的内表面越光滑单晶性越好,否则晶体形状不好缺陷多就会给后面的收单晶衍射数据带来麻烦,甚至会造成无法解晶体结构,那将是非常可惜的;烧杯用滤纸或塑料薄膜封口防止灰尘落入,同时减慢挥发速度,长出较好晶形的单晶,一般挥发性稍差的溶剂用滤纸,如,水等。静置至发现满意的晶体出现。
方法二:扩散
用金属配合物的良溶剂将其溶解在小烧杯或广口瓶中,塑料薄膜封口(用针戳3-5个小孔),放于盛有该金属配合物的挥发性不良溶剂(一般用乙醚)的大瓶子中。静置至发现满意的晶体出现。
方法三:分层
将金属的水溶液放于试管下层,配体的有机溶剂溶液放于试管上层,中间是水和有机溶剂的混合溶剂,封口。操作要小心,最好是用滴管伸进试管靠近液面缓慢滴加。静置至发现满意的晶体出现。
以上是我在培养配合物单晶常用的方法,一般是几种方法同时做,不是每种方法都能或总能培养出单晶,更多的是取决于配合物的结晶性好坏。总之就是多试:不同的温度、溶剂、混合溶剂的比例……
1.制备结晶,要注意选择合宜的溶剂和应用适量的溶剂。合宜的溶剂,最好是在冷时对所需要的成分溶解度较小,而热时溶解度较大。溶剂的沸点亦不宜太高。一般常用甲醇、丙酮、氯仿、乙醇、乙酸乙醋等。但有些化合物在一般溶剂中不易形成结晶,而在某些溶剂中则易于形成结晶。
2.制备结晶的溶液,需要成为过饱和的溶液。一般是应用适量的溶剂在加温的情况下,将化合物溶解再放置冷处。如果在室温中可以析出结晶,就不一定放置于冰箱中,以免伴随结晶析出更多的杂质。“新生态”的物质即新游离的物质或无定形的粉未状物质,远较晶体物质的溶解度大,易于形成过饱和溶液。一般经过精制的化合物,在蒸去溶剂抽松为无定形粉未时就是如此,有时只要加入少量溶剂,往往立即可以溶解,稍稍放置即能析出结晶。
3.制备结晶溶液,除选用单一溶剂外,也常采用混合溶剂。一般是先将化合物溶于易溶的溶剂中,再在室温下滴加适量的难溶的溶剂,直至溶液微呈浑浊,并将此溶液微微加温,使溶液完全澄清后放置。
4.结晶过程中,一般是溶液浓度高,降温诀,析出结晶的速度也快些。但是其结晶的颗粒较小,杂质也可能多些。有时自溶液中析出的速度太快,超过化合物晶核的形成劝分子定向排列的速度,往往只能得到无定形粉未。有时溶液太浓,粘度大反而不易结晶化。如果溶液浓度适当,温度慢慢降低,有可能析出结晶较大而纯度较高的结晶。有的化合物其结晶的形成需要较长的时间。
5.制备结晶除应注意以上各点外,在放置过程中,最好先塞紧瓶塞,避免液面先出现结晶,而致结晶纯度较低。如果放置一段时间后没有结晶析出,可以加入极微量的种晶,即同种化合物结晶的微小颗粒。加种晶是诱导晶核形成常用而有效的手段。一般地说,结晶化过程是有高度选择性的,当加入同种分子或离子,结晶多会立即长大。而且溶液中如果是光学异构体的混合物,还可依种晶性质优先析出其同种光学异构体。没有种晶时,可用玻璃棒蘸过饱和溶液一滴,在空气中任溶剂挥散,再用以磨擦容器内壁溶液边缘处,以诱导结晶的形成。如仍无结晶析出,可打开瓶塞任溶液逐步挥散,慢慢析晶。或另选适当溶剂处理,或再精制一次,尽可能除尽杂质后进行结晶操作。
6.在制备结晶时,最好在形成一批结晶后,立即倾出上层溶液,然后再放置以得到第二批结晶。晶态物质可以用溶剂溶解再次结晶精制。这种方法称为重结晶法。结晶经重结晶后所得各部分母液,再经处理又可分别得到第二批、第三批结晶。这种方法则称为分步结晶法或分级结晶法。晶态物质在一再结晶过程中,结晶的析出总是越来越快,纯度也越来越高。分步结晶法各部分所得结晶,其纯度往往有较大的差异,但常可获得一种以上的结晶成分,在未加检查前不要贸然混在一起。
7.化合物的结晶都有一定的结晶形状、色泽、熔点和熔距,一可以作为鉴定的初步依据。这是非结晶物质所没有的物理性质。化合物结晶的形状和熔点往往因所用溶剂不同而有差异。原托品碱在氯仿中形成棱往状结晶,熔点207℃;在丙酮中则形成半球状结晶,熔点203℃;在氯仿和丙酮混合溶剂中则形成以上两种晶形的结晶。所以文献中常在化合物的晶形、熔点之后注明所用溶剂。一般单体纯化合物结晶的熔距较窄,有时要求在0.5℃左右,如果熔距较长则表示化合物不纯。
不知这些可否对各位朋友有些许帮助?
单晶培养的具体操作方法:四条注意事项:1、结晶容器的选择(敞口烧杯,既不能用从未使用过的新烧杯,也不能用很旧的烧杯。可能原因为,烧杯太新,不利于晶核的形成,而太旧则形成晶核的部位太多,不利于单晶的生长。) 2、溶剂的选择(合适的溶剂将物质溶解,溶解性不能太好也不能太差且具有一定的挥发性,不能挥发太快也不能太慢)3、结晶速度(尽量慢的让溶剂挥发,一旦析出结晶,过滤,可能得到单晶也可能是混晶,千万别用母液洗晶体)4、环境的选择(放在一个平稳的地方,千万不能有一丝一毫的震动,否则即使得到单晶也全完了)。

有些东西,TLC显示只有一个点,但做出来的谱图却不漂亮。
有些大分子量的化合物,如卟啉,富勒烯用柱色谱很难分得特别干净。下面说说我的经验。

我的经验是用培养单晶的方法纯化,即非经典的重结晶(尤其适用于卟啉、杯芳烃,富勒烯等大分子量的化合物)。这种方法可以除掉柱分离都不能分离的杂质。即将你的产物在试管中溶于1份中等溶解性的溶剂,溶解性太好的溶剂是不行的,一般为二氯甲烷,三氯甲烷,乙酸乙酯,甲苯,最好不用THF和二氧六环,除非前面的溶剂都溶解不了。然后用滴管(最好用注射器)小心沿试管壁加入四份不溶你产品的溶剂(一般为正己烷和甲醇,两种溶剂必须互溶,常用的溶剂体系为二氯甲烷/甲醇,三氯甲烷/甲醇,二氯甲烷/正己烷,三氯甲烷/正己烷,甲苯/正己烷,乙酸乙酯/正己烷),这是你可以看见溶液中有一两相界面,塞上塞子,将试管放到一个没有人会碰到的地方,一般2-7天两相就会完全混合,有固体会析出。  

下面就是最重要的操作。将母液用很细的滴管尽可能的吸出,注意不要把固体吸出!然后用正己烷(注意不要用石油醚,因为不易完全出去)或甲醇洗涤固体,然后用很细的滴管尽可能的吸出加入的溶剂,反复两次后。如果瓶底有颗粒状可以吸动的固体,瓶壁上有膜状的固体,这时应该再加入少量正己烷,将颗粒状可以吸动的固体吸出,滴在双层的家用的卫生纸上,然后风干即可。(不要用滤纸,因为吸附太厉害,5mg东西估计全部粘在滤纸上,刮不下来)。瓶壁上膜状的固体就留着下次用,一般是不纯的东西。如果析出的是晶体,最好。操作同上。我的巨漂亮的卟啉的谱图都是这么弄出来的。
3楼2006-10-20 00:37:09
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 7 个回答

vink

木虫 (著名写手)

★ ★ ★ ★
huyuchem(金币+2):谢谢
纳米镍粉(金币+2,VIP+0):OK,很好
转贴啊,都是从小木虫搜的,不要侵犯版权就好了,有些重复,希望多多交流啊,我也关注这个问题
lxf7212最新补充金属配合物单晶培养-无水无氧条件下的单晶培养方法

感谢众虫友的热心回帖,一些问题一并作答。
1。本人只会培养单晶不会解析结构,有关单晶的软件我都是在网上免费下的。搜索关键词为:软件名+FREE.
2.这几天刚好参观了一个金属有机实验室,学到了金属配合物单晶培养-无水无氧条件下的单晶培养,特与大家共享,麻烦的方法我就不说了,最简单的方法就是将你的固体样品加入一带橡皮塞的容器(最常用的就是核磁管,塞子不是我们常用的硬塞子,而是软的橡皮塞(随便什么塞子都行,只要能密封且能扎针头),先抽真空,然后通氮气,再用注射器加入良性溶剂,充分溶解(超声),然后再用注射器沿器壁加入不良溶剂即可。(网上的无水无氧方法不是用到真空线就是用到schlenk瓶,一般的实验室哪有这东西?)
3。还有一种稍复杂的方法
即加工一个能塞翻口塞的双层套管(上部是相通的),方法同上,不过不良溶剂是加在两层管之间,即上述方法是液相扩散法,而本方法是气相扩散法。

再补充一个最简单的方法:
www.baidu.com上用“金属配合物单晶”搜索,你不但能学到单晶培养知识,同时能了解许多你以前不知道的有用的化学论坛

单晶高手的经验:简单、实用-给搞有机的

版上已有一些单晶培养经验,我个人感觉有关键细节没有写出,特说说我的经验。
本文主要针对搞有机的。配合物的单晶培养,各实验室都有家传,而且以此为主业

,不必看本文。

1.单晶培养的方法多种多样,我们没必要掌握那些难以操作的,如升华法、共结晶

法等。最简单的最实用。常用的有1.溶剂缓慢挥发法;2.液相扩散法;3.气相扩散

法。99%的单晶是用以上三种方法培养出来的。

2.单晶培养所需样品用量
一般以10-25mg为佳,如果你只有2mg左右样品,也没关系,但这时就要选择液相

扩散法和气相扩散法,不能使用溶剂缓慢挥发法。

3.单晶培养的样品的预处理
样品溶解后一定要过滤,不能用滤纸,而是用一小团棉花轻轻的塞在滴管的中下部

或下部,不要塞太紧,否则流的太慢。样品当然是越纯越好,不过如果实在没办法

弄纯也没关系,培养一次就相当于提纯了一次,我经常用一些TLC显示有杂点的东

西长单晶,但得多养几次。

4.一定要做好记录
一次就得到单晶的可能性比较小。因此最好的方法就是在第一次培养单晶的时候,

采取少量多溶剂体系的办法。如果你有50mg样品,建议你以5mg为一单位,这样你

可以同时实验10种溶剂体系,而不是选两种溶剂体系,每个体系25mg。这是做好记

录就特别重要,以免下次又采用已经失败的溶剂体系,而且单晶解析时必须知道所

用的溶剂。

5.培养单晶时,最好放到没人碰的地方,这点大家都知道。我想说的是你不能一天

去看几次也不能放在那里5,6天不管。也许有的溶剂体系一天就析出了晶体,结果

5天后,溶剂全干了。一般一天看一次合适,看的时候不要动它。明显不行的体系

(如析出絮状固体)就要重新用别的溶剂体系再重新培养。

6.液相扩散法中良溶剂与不良溶剂的比例最好为1:2-1:4。

7.烷基链超过4个碳的很难培养单晶。

8.分子中最好不要有叔丁基,因为容易无序,影响单晶解析的质量。

9.含氯的取代基一般容易长单晶,如4-氯苯基取代化合物比苯基取代化合物容易长单晶。

10.有具体问题可以问我,乐意回答。

zsychem  单晶培养的经验

1.单晶培养的方法多种多样,我们没必要掌握那些难以操作的,如升华法、共结晶

法等。最简单的最实用。常用的有1.溶剂缓慢挥发法;2.液相扩散法;3.气相扩散

法。99%的单晶是用以上三种方法培养出来的。

2.单晶培养所需样品用量
一般以10-25mg为佳,如果你只有2mg左右样品,也没关系,但这时就要选择液相

扩散法和气相扩散法,不能使用溶剂缓慢挥发法。

3.单晶培养的样品的预处理
样品溶解后一定要过滤,不能用滤纸,而是用一小团棉花轻轻的塞在滴管的中下部

或下部,不要塞太紧,否则流的太慢。样品当然是越纯越好,不过如果实在没办法

弄纯也没关系,培养一次就相当于提纯了一次,我经常用一些TLC显示有杂点的东

西长单晶,但得多养几次。

4.一定要做好记录
一次就得到单晶的可能性比较小。因此最好的方法就是在第一次培养单晶的时候,

采取少量多溶剂体系的办法。如果你有50mg样品,建议你以5mg为一单位,这样你

可以同时实验10种溶剂体系,而不是选两种溶剂体系,每个体系25mg。这是做好记

录就特别重要,以免下次又采用已经失败的溶剂体系,而且单晶解析时必须知道所

用的溶剂。

5.培养单晶时,最好放到没人碰的地方,这点大家都知道。我想说的是你不能一天

去看几次也不能放在那里5,6天不管。也许有的溶剂体系一天就析出了晶体,结果

5天后,溶剂全干了。一般一天看一次合适,看的时候不要动它。明显不行的体系

(如析出絮状固体)就要重新用别的溶剂体系再重新培养。

6.液相扩散法中良溶剂与不良溶剂的比例最好为1:2-1:4。

7.烷基链超过4个碳的很难培养单晶。

8.分子中最好不要有叔丁基,因为容易无序,影响单晶解析的质量。

9.含氯的取代基一般容易长单晶,如4-氯苯基取代化合物比苯基取代化合物容易

wjxxj金属配合物单晶的培养
方法一:挥发
用金属配合物的良溶剂将其溶解在小烧杯中,小烧杯的内表面越光滑单晶性越好,否则晶体形状不好缺陷多就会给后面的收单晶衍射数据带来麻烦,甚至会造成无法解晶体结构,那将是非常可惜的;烧杯用滤纸或塑料薄膜封口防止灰尘落入,同时减慢挥发速度,长出较好晶形的单晶,一般挥发性稍差的溶剂用滤纸,如,水等。静置至发现满意的晶体出现。
方法二:扩散
用金属配合物的良溶剂将其溶解在小烧杯或广口瓶中,塑料薄膜封口(用针戳3-5个小孔),放于盛有该金属配合物的挥发性不良溶剂(一般用乙醚)的大瓶子中。静置至发现满意的晶体出现。
方法三:分层
将金属的水溶液放于试管下层,配体的有机溶剂溶液放于试管上层,中间是水和有机溶剂的混合溶剂,封口。操作要小心,最好是用滴管伸进试管靠近液面缓慢滴加。静置至发现满意的晶体出现。
以上是我在培养配合物单晶常用的方法,一般是几种方法同时做,不是每种方法都能或总能培养出单晶,更多的是取决于配合物的结晶性好坏。总之就是多试:不同的温度、溶剂、混合溶剂的比例……
1.制备结晶,要注意选择合宜的溶剂和应用适量的溶剂。合宜的溶剂,最好是在冷时对所需要的成分溶解度较小,而热时溶解度较大。溶剂的沸点亦不宜太高。一般常用甲醇、丙酮、氯仿、乙醇、乙酸乙醋等。但有些化合物在一般溶剂中不易形成结晶,而在某些溶剂中则易于形成结晶。
2.制备结晶的溶液,需要成为过饱和的溶液。一般是应用适量的溶剂在加温的情况下,将化合物溶解再放置冷处。如果在室温中可以析出结晶,就不一定放置于冰箱中,以免伴随结晶析出更多的杂质。“新生态”的物质即新游离的物质或无定形的粉未状物质,远较晶体物质的溶解度大,易于形成过饱和溶液。一般经过精制的化合物,在蒸去溶剂抽松为无定形粉未时就是如此,有时只要加入少量溶剂,往往立即可以溶解,稍稍放置即能析出结晶。
3.制备结晶溶液,除选用单一溶剂外,也常采用混合溶剂。一般是先将化合物溶于易溶的溶剂中,再在室温下滴加适量的难溶的溶剂,直至溶液微呈浑浊,并将此溶液微微加温,使溶液完全澄清后放置。
4.结晶过程中,一般是溶液浓度高,降温诀,析出结晶的速度也快些。但是其结晶的颗粒较小,杂质也可能多些。有时自溶液中析出的速度太快,超过化合物晶核的形成劝分子定向排列的速度,往往只能得到无定形粉未。有时溶液太浓,粘度大反而不易结晶化。如果溶液浓度适当,温度慢慢降低,有可能析出结晶较大而纯度较高的结晶。有的化合物其结晶的形成需要较长的时间。
5.制备结晶除应注意以上各点外,在放置过程中,最好先塞紧瓶塞,避免液面先出现结晶,而致结晶纯度较低。如果放置一段时间后没有结晶析出,可以加入极微量的种晶,即同种化合物结晶的微小颗粒。加种晶是诱导晶核形成常用而有效的手段。一般地说,结晶化过程是有高度选择性的,当加入同种分子或离子,结晶多会立即长大。而且溶液中如果是光学异构体的混合物,还可依种晶性质优先析出其同种光学异构体。没有种晶时,可用玻璃棒蘸过饱和溶液一滴,在空气中任溶剂挥散,再用以磨擦容器内壁溶液边缘处,以诱导结晶的形成。如仍无结晶析出,可打开瓶塞任溶液逐步挥散,慢慢析晶。或另选适当溶剂处理,或再精制一次,尽可能除尽杂质后进行结晶操作。
6.在制备结晶时,最好在形成一批结晶后,立即倾出上层溶液,然后再放置以得到第二批结晶。晶态物质可以用溶剂溶解再次结晶精制。这种方法称为重结晶法。结晶经重结晶后所得各部分母液,再经处理又可分别得到第二批、第三批结晶。这种方法则称为分步结晶法或分级结晶法。晶态物质在一再结晶过程中,结晶的析出总是越来越快,纯度也越来越高。分步结晶法各部分所得结晶,其纯度往往有较大的差异,但常可获得一种以上的结晶成分,在未加检查前不要贸然混在一起。
7.化合物的结晶都有一定的结晶形状、色泽、熔点和熔距,一可以作为鉴定的初步依据。这是非结晶物质所没有的物理性质。化合物结晶的形状和熔点往往因所用溶剂不同而有差异。原托品碱在氯仿中形成棱往状结晶,熔点207℃;在丙酮中则形成半球状结晶,熔点203℃;在氯仿和丙酮混合溶剂中则形成以上两种晶形的结晶。所以文献中常在化合物的晶形、熔点之后注明所用溶剂。一般单体纯化合物结晶的熔距较窄,有时要求在0.5℃左右,如果熔距较长则表示化合物不纯。
不知这些可否对各位朋友有些许帮助?
单晶培养的具体操作方法:四条注意事项:1、结晶容器的选择(敞口烧杯,既不能用从未使用过的新烧杯,也不能用很旧的烧杯。可能原因为,烧杯太新,不利于晶核的形成,而太旧则形成晶核的部位太多,不利于单晶的生长。) 2、溶剂的选择(合适的溶剂将物质溶解,溶解性不能太好也不能太差且具有一定的挥发性,不能挥发太快也不能太慢)3、结晶速度(尽量慢的让溶剂挥发,一旦析出结晶,过滤,可能得到单晶也可能是混晶,千万别用母液洗晶体)4、环境的选择(放在一个平稳的地方,千万不能有一丝一毫的震动,否则即使得到单晶也全完了)。

单晶,多晶,非晶,微晶,无定形,准晶的区别
理解这几个概念,首先要理解晶体概念,以及晶粒概念。我想学固体物理的或者金属材料的都会对这些概念很清楚!
自然界中物质的存在状态有三种:气态、液态、固态
固体又可分为两种存在形式:晶体和非晶体
晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。
晶体共同特点:
均 匀 性: 晶体内部各个部分的宏观性质是相同的。
各向异性: 晶体种不同的方向上具有不同的物理性质。
固定熔点: 晶体具有周期性结构,熔化时,各部分需要同样的温度。
规则外形: 理想环境中生长的晶体应为凸多边形。
对 称 性: 晶体的理想外形和晶体内部结构都具有特定的对称性。
对晶体的研究,固体物理学家从成健角度分为
离子晶体
原子晶体
分子晶体
金属晶体
显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,230种空间群,用拓扑学,群论知识去研究理解。可参考《晶体学中的对称群》一书 (郭可信,王仁卉著)。
与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。一般,无定型就是非晶 英语叫amorphous,也有人叫glass(玻璃态).
晶粒是另外一个概念,搞材料的人对这个最熟了。首先提出这个概念的是凝固理论。从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。英文晶粒用Grain表示,注意与Particle是有区别的。
有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂。所以很多冶金学家材料科学家一直在开发晶粒细化技术。
科学总是喜欢极端,看得越远的镜子叫望远镜;看得越细的镜子叫显微镜。晶粒度也是这样的,很小的晶粒度我们喜欢,很大的我们也喜欢。最初,显微镜倍数还不是很高的时候,能看到微米级的时候,觉得晶粒小的微米数量是非常小的了,而且这个时候材料的力学性能特别好。人们习惯把这种小尺度晶粒较微晶。然而科学总是发展的,有一天人们发现如果晶粒度在小呢,材料性能变得不可思议了,什么量子效应,隧道效应,超延展性等等很多小尺寸效应都出来了,这就是现在很热的,热得不得了的纳米,晶粒度在1nm-100nm之间的晶粒我们叫纳米晶。
再说说非晶,非晶是无规则排列,无周期无对称特征,原子排列无序,没有一定的晶格常数,描叙结构特点的只有径向分布函数,这是个统计的量。我们不知道具体确定的晶格常数,我们总可以知道面间距的统计分布情况吧。非晶有很多诱人的特性,所以也有一帮子人在成天做非晶,尤其是作大块的金属非晶。因为它的应力应变曲线很特别。前面说了,从液态到到固态有个成核长大的过程,我不让他成核呢,直接到固态,得到非晶,这需要很快的冷却速度。所以各路人马一方面在拼命提高冷却速度,一方面在不断寻找新的合金配方,因为不同的合金配方有不同的非晶形成能力,通常有Tg参数表征,叫玻璃化温度。非晶没有晶粒,也就没有晶界一说。也有人曾跟我说过非晶可以看成有晶界组成。 那么另一方面,我让他成核,不让他长大呢,不就成了纳米晶。
人们都说,强扭的瓜不甜,既然都是抑制成核长大,那么从热力学上看,很多非晶,纳米晶应该不是稳态相。所以你作出非晶、纳米晶了,人们自然会问你热稳定性如何。
后来,又有一个牛人叫卢柯,本来他是搞非晶的,读研究生的时候他还一直想把非晶的结构搞清楚呢(牛人就是牛人,选题这么牛,非晶的结构现在人们还不是很清楚)。他想既然我把非晶做出来了,为什么我不可以把非晶直接晶化成纳米晶呢,纳米晶热啊,耶,这也是一种方法,叫非晶晶化法。
既然晶界是一种缺陷,缺陷当然会影响材料性能,好坏先不管他,但是总不好控制。如果我把整个一个材料做成一个晶粒,也就是单晶,会是什么样子呢,人们发现单晶确实会有多晶非晶不同的性能,各向异性,谁都知道啊。当然还有其他的特性。所以很多人也在天天捣鼓着,弄些单晶来。
现在不得不说准晶。准晶体的发现,是20世纪80年代晶体学研究中的一次突破。这是我们做电镜的人的功劳。1984年底,D.Shechtman等人宣布,他们在急冷凝固的Al Mn合金中发现了具有五重旋转对称但并无无平移周期性的合金相,在晶体学及相关的学术界引起了很大的震动。不久,这种无平移同期性但有位置序的晶体就被称为准晶体。后来,郭先生一看,哇,我们这里有很多这种东西啊,抓紧分析,马上写文章,那段金属固体原子像的APL,PRL多的不得了,基本上是这方面的内容。准晶因此也被D.Shechtman称为“中国像”。
斑竹也提到过孪晶,英文叫twinning,孪晶其实是金属塑性变形里的一个重要概念。孪生与滑移是两种基本的形变机制。从微观上看,晶体原子排列沿某一特定面镜像对称。那个面叫栾晶面。很多教科书有介绍。一般面心立方结构的金属材料,滑移系多,已发生滑移,但是特定条件下也有孪生。加上面心立方结构层错能高,不容易出现孪晶,曾经一段能够在面心立方里发现孪晶也可以发很好的文章。前两年,马恩就因为在铝里面发现了孪晶,发了篇Science呢。卢柯去年也因为在纳米铜里做出了很多孪晶,既提高了铜的强度,又保持了铜良好导电性(通常这是一对矛盾),也发了个Science.这年头Science很值钱啊。像一个穷山沟,除了个清华大学生一样。
现在,从显微学上来看单晶,多晶,微晶,非晶,准晶,纳米晶,加上孪晶。单晶与多晶,一个晶粒就是单晶,多个晶粒就是多晶,没有晶粒就是非晶。单晶只有一套衍射斑点;多晶的话,取向不同会表现几套斑点,标定的时候,一套一套来,当然有可能有的斑点重合,通过多晶衍射的标定可以知道晶粒或者两相之间取向关系。如果晶粒太小,可能会出现多晶衍射环。非晶衍射是非晶衍射环,这个环均匀连续,与多晶衍射环有区别。
纳米晶,微晶是从晶粒度大小角度来说的,在大一点的晶粒,叫粗晶的。在从衍射上看,一般很难作纳米晶的单晶衍射,因为最小物镜光栏选区还是太大。有做NBED的么,不知道这个可不可以。
孪晶在衍射上的表现是很值得我们学习研究的,也最见标定衍射谱的功力,大家可以参照郭可信,叶恒强编的那本《电子衍射在材料科学中应用》第六章。
准晶,一般晶体不会有五次对称,只有1,2,3,4,6次旋转对称(这个证明经常作为博士生入学考试题,呵呵)。所以看到衍射斑点是五次对称的,10对称的啊,其他什么的,可能就是准晶。

[ Last edited by vink on 2006-10-20 at 00:40 ]
2楼2006-10-20 00:35:45
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

vink

木虫 (著名写手)

有机金属合成中无水无氧条件下单晶的培养

本人做金属有机合成以来已经三年之久,在此颇有一些收获。写出来与大家一起讨论。有不正确的请指正。谢谢。
  在此三年中培养的晶体已经有100多个,有人说你这么厉害,能培养这么多的晶体。这不能说是厉害,只能说是我对这方面比较感兴趣,有一些小的技巧。
单晶的培养首先你要有这方面的兴趣,如果没有这方面的兴趣你就不要做这个研究了
。我所做的领域是金属有机在催化有机反应、催化烯烃、LA及其它的酯的聚合。当然有
好的晶体是能发好的文章的前提。如果你没有晶体,那么你的文章的档次就不会太高(我指做我们这方面的研究)。
闲话少说,走入正题。
(1)溶剂的选择与加入方法
  在单晶的培养过程中,我走了与正常结晶相反的路子。通常是用适量极性大的溶剂
提取你的反应物质,然后再滴加少量的极性小的溶剂,放置结晶。这样做的结果是结晶
很慢,而且是结晶的收率不高。而我用的方法是背道而行。先用极性小的溶剂提取。根
据你的反应物质量,加入适量的极性小的溶剂,不能全溶解,就加入适量的极性大的溶剂(注意:切不可多加),如果此时还有少量没有溶解,A)你可以再加重复极性小的溶剂,再加极性大的溶剂。直到全溶解;B)也可以微热溶解(如果你的样品是热稳定好的话)这样的做法是非常好结晶的,不信你试试看,如果你晚上做的这样的操作,第二天早上你会发现你的晶体已经长出来了。C)微热还有些没溶解,就直接过滤。这样也可以很快结晶。但是会损失些产物。
(2)温度的选择
上面谈了溶剂的选择,和加入顺序。现在我再来说说温度的选择。
溶剂加入后就要选择放那里结晶了 。你不能总认为温度越低越好,要想得到好的晶体,温度的选择很重要的!!!首先放在室温(必须无外界震动)一两天看看,有无结晶,如有结晶说明室温就能结出好晶体,无需放之低温。如果室温不结晶,再放如0度。过两天看看,再不行,-5度,-10度,-15度,-20度,-30度,我想,这些条件大家实验应该不难。如过你一开始放于低温可能结晶很快但的不到好的晶体。可能是多晶,而不是单晶。长晶体过程千万不能震动。有条件的单独一间房间来结晶最好。
低温结出的晶体再送测试前要处理,不能那出来就去测。 为什么???
大家想啊。。。
拿出来到室温,不是温度升高了吗?那晶体就可能融化了 (我作过这样的蠢事),首先你的去掉部分溶剂才行。只留少许即可。对水,氧气敏感的的用惰性气体如N2,Ar0保护。)起来再转移溶剂。转移完再冲N2下关毕你装晶体的容器活塞。去测试,这样就不会化了。
(3)利用溶剂的挥发
无水无氧要求的金属配合物这种情况的培养单晶要求有手套箱,在手套箱里(有这样的条件),你可以用schlenk 瓶、小烧杯、以及核磁管来用作结晶的工具。容器的口部用封模封好。然后上面用细针扎几个小眼用来挥发溶剂。不几天你会发现你的容器内辟会生长出晶体来。容器的内表面越光滑单晶性越好,否则晶体形状不好缺陷多就会给后面的收单晶衍射数据带来麻烦,甚至会造成无法解晶体结构,那将是非常可惜的;要强调的是用Schlenk及核磁管这两种容器用来结晶是最好的。为什么呢??做无水无氧的人知道schlenk是无水无氧操作的专用瓶。它有侧活塞用来开关瓶与外界的相通。所以操作方面很好。在你获得很好单晶后你要从手套箱里拿出来啊,如果你用别的容器,可能那些对空气特别敏感的物质就不能够稳定到你测量完晶体结构。同样很小的核磁管也很好封的。而且它要的量很少。不浪费样品。如果没有手套箱的话,可能这个方面就不太适用(对于对水,氧敏感的物质。

(4)利用极性小(溶解度小)的溶剂
你的反应结束后,用极性大的溶剂提取后。再进行浓缩恰好到有溶质析出时为此(此时因减压浓缩体系内的温度应该低于外界)等到温度升到室温,拿到手套箱内,用针筒向上面的溶液面上轻轻的滴加几滴极性小的(溶解度小的)溶剂。这样处理完你会很易得到很好的晶体的。此时如果你细心的话你会发现,你的晶体结晶时是从液面开始的。为什么???仔细想。
以上是我在培养要求比较苛刻有机金属配合物单晶常用的方法,一般是几种方法同时做,不是每种方法都能或总能培养出单晶,更多的是取决于配合物的结晶性好坏。总之就是多试:不同的温度、溶剂、混合溶剂的比例……
总之,单晶的培养溶剂的选择很重要,有些时候你会发现你选择的溶剂不同,即使你很溶剂得到晶体,但是晶体的形状会各不相同的。甚至有些时候你得到的晶体不是规则的,或是细长的针状的,所以溶剂的选择很重要。我总结出来,一般我做反应时候用极性相对大些的甲苯、乙醚、THF等。再结晶时候用极性小些正己烷、以及正己烷与甲苯的混合溶剂,或其它的混合溶剂。
了)。
4楼2006-10-20 00:37:31
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

may8205

银虫 (小有名气)

谢谢大家! 以后希望大家好好交流!
5楼2006-10-20 12:05:39
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
普通表情 高级回复(可上传附件)
信息提示
请填处理意见