|
|
zhengbiju1833(金币+120, 翻译EPI+1): 2011-04-15 08:30:01
Transparent conductive oxide film has high conductivity and high light through rate so that it becomes the key research projects of research and industry . The key is reflected in TCOs as transparent conductive electrodes have lots of applications in photoelectron solar, flat panel display, organic light emitting diode, etc . Among them, Tin doped Indium2O3 is the most widely used materials. But because of high prices and the lack of indium that limits its application in transparent electrodes, we are seeking new alternative materials. This alternative materials,whose resistivity should in ~ 10- 3Ωcm orders of magnitude or smaller, through rate of near ultraviolet - visible range greater than 80%, optical forbidden band width should be about 3 eV.At present the film of the dopped Tin oxide and Tianium oxide is the best choice to replace ITO because their resistivity are low, within the scope of 500-600 nm visible light transmittance is 85 percent on average, and their of raw materials have low prices and they can become mass production.Titanium oxide and Tin oxide base film can be widely used in the aeras of display, detectors, antireflection coating, gas sensors, photoelectricity, electrochromic devices, etc. Therefore, the study of optical and electrical properties of Titanium oxide and Tin oxide base transparent conductive oxides film has the vital significance.
To sum up, this paper has two basic points: Firstly, how to further reduce the resistivity of the film; Secondly, how to effectively change the forbidden band width of thin film.The key research is structure, doping morphology, electrical and optical properties of the different dopped content of Indium and Tin dop TiO film. In addition, because Titanium oxide and Tin oxide are the same gens oxide semiconductor rand they have similar features, so Titanium oxide base thin films and Tin oxide composite film also studied and discussed in this paper. Using XRD, SEM and XPS to analyze and observe the composition and microstructure of the thin film. And by using ultraviolet - visible spectrophotometer, light to shine and hall effect apparatus on the optical and electrical performance films are also investigated. |
|