| 查看: 871 | 回复: 3 | |||
| 本帖产生 1 个 翻译EPI ,点击这里进行查看 | |||
[交流]
物理方面英译汉
|
|||
|
TCOs are wide band gap (Eg) semiconducting oxides, with conductivity in the range 102 – 1.2106 (S). The conductivity is due to doping either by oxygen vacancies or by extrinsic dopants. In the absence of doping, these oxides become very good insulators, with > 1010 -cm. Most of the TCOs are n-type semiconductors. The electrical conductivity of n-type TCO thin films depends on the electron density in the conduction band and on their mobility: =ne, where is the electron mobility, n is its density, and e is the electron charge. The mobility is given by: where is the mean time between collisions, and m* is the effective electron mass. However, as n and are negatively correlated, the magnitude of is limited. Due to the large energy gap (Eg > 3 eV) separating the valence band from the conducting band, the conduction band can not be thermally populated at room temperature (kT~0.03 eV, where k is Boltzmann’s constant), hence, stoichiometric crystalline TCOs are good insulators. To explain the TCO characteristics, various population mechanisms and several models describing the electron mobility were proposed. Some characteristics of the mobility and the processes by which the conduction band is populated with electrons were shown to be interconnected by electronic structure studies, e.g., that the mobility is proportional to the magnitude of the band gap. In the case of intrinsic materials, the density of conducting electrons has often been attributed to the presence of unintentionally introduced donor centers, usually identified as metallic interstitials or oxygen vacancies that produced shallow donor or impurity states located close to the conduction band. The excess or donor electrons are thermally ionized at room temperature, and move into the host conduction band. However, experiments have been inconclusive as to which of the possible dopants was the predominant donor. Extrinsic dopants have an important role in populating the conduction band, and some of them have been unintentionally introduce. Thus, it has been conjectured in the case of ZnO that interstitial hydrogen, in the H+ donor state, could be responsible for the presence of carrier electrons. In the case of SnO2, the important role of interstitial Sn in populating the conducting band, in addition to that of oxygen vacancies, was conclusively supported by first-principle calculations of Kiliç and Zunger. They showed that Sn interstitials and O vacancies, which dominated the defect structure of SnO2 due to the multivalence of Sn, explained the natural nonstoichiometry of this material and produced shallow donor levels, turning the material into an intrinsic n-type semiconductor.10 The electrons released by these defects were not compensated because acceptor-like intrinsic defects consisting of Sn voids and O interstitials did not form spontaneously. Furthermore, the released electrons did not make direct optical transitions in the visible range due to the large gap between the Fermi level and the energy level of the first unoccupied states. Thus, SnO2 could have a carrier density with minor effects on its transparency.10 The conductivity is intrinsically limited for two reasons. First, n and cannot be independently increased for practical TCOs with relatively high carrier concentrations. At high conducting electron density, carrier transport is limited primarily by ionized impurity scattering, i.e., the Coulomb interactions between electrons and the dopants. Higher doping concentration reduces carrier mobility to a degree that the conductivity is not increased, and it decreases the optical transmission at the near-infrared edge. With increasing dopant concentration, the resistivity reaches a lower limit, and does not decrease beyond it, whereas the optical window becomes narrower. Bellingham et al.29 were the first to report that the mobility and hence the resistivity of transparent conductive oxides (ITO, SnO2, ZnO) are limited by ionized impurity scattering for carrier concentrations above 1020 cm-3. Ellmer also showed that in ZnO films deposited by various methods, the resistivity and mobility were nearly independent of the deposition method and limited to about 210-4 cm and 50 cm2/Vs, respectively. , In ITO films, the maximum carrier concentration was about 1.51021 cm-3, and the same conductivity and mobility limits also held . This phenomenon is a universal property of other semiconductors. , Scattering by the ionized dopant atoms that are homogeneously distributed in the semiconductor is only one of the possible effects that reduces the mobility. The all recently developed TCO materials, including doped and undoped binary, ternary, and quaternary compounds, also suffer from the same limitations. Only some exceptional samples had a resistivity of 10-4 cm. In addition to the above mentioned effects that limit the conductivity, high dopant concentration could lead to clustering of the dopant ions, which increases significantly the scattering rate, and it could also produce nonparabolicity of the conduction band, which has to be taken into account for degenerately doped semiconductors with filled conduction bands. |
» 猜你喜欢
依托企业入选了国家启明计划青年人才。有无高校可以引进的。
已经有9人回复
有时候真觉得大城市人没有县城人甚至个体户幸福
已经有11人回复
表哥与省会女结婚,父母去帮带孩子被省会女气回家生重病了
已经有7人回复
同年申请2项不同项目,第1个项目里不写第2个项目的信息,可以吗
已经有8人回复
依托企业入选了国家启明计划青年人才。有无高校可以引进的。
已经有10人回复
天津大学招2026.09的博士生,欢迎大家推荐交流(博导是本人)
已经有9人回复
有院领导为了换新车,用横向课题经费买了俩车
已经有10人回复
AI 太可怕了,写基金时,提出想法,直接生成的文字比自己想得深远,还有科学性
已经有6人回复
» 抢金币啦!回帖就可以得到:
医学超声影像负责人招聘-中国科学院赣江创新研究院
+1/987
医学超声影像负责人招聘-中国科学院赣江创新研究院
+1/985
供应爱德华RV 3、RV 12,阿特拉斯及莱宝真空品牌油泵及分子泵等真空产品15216851283
+1/83
人间烟火,实则就是追求最简单的快乐
+1/82
中国科学院深圳先进技术研究院——招聘博士后
+3/59
罗格斯大学纽瓦克校区(Rutgers-Newark) 招收 PHD,计算材料物理方向
+1/39
有没有人做过这种结构的顺式体向反式体的转化?
+1/39
中科院深圳先进技术研究院招聘免疫及计算生物学方向博士后、科研助理或联培学生
+1/30
上海交通大学大气环境科学课题组招收2026年入学博士生
+1/28
上海交大药学院侯四化课题组招收2名2026年秋季入学申请-考核制博士生
+1/27
全奖博士 英国利物浦大学 × 台湾清华大学 联合培养
+1/17
香港中文大学(深圳)陈筱萌 课题组招生公告(博士 / 博后 / 硕士 / RA)
+1/15
澳科大药学院诚招2026年秋季药剂学/生物材料硕士研究生(2026年3月5日报名截止)
+1/9
江汉大学轩亮教授课题组招博士研究生/博士后
+1/5
广东工业大学马琳教授课题组招收2026年博士(材料物理与化学、光学专业)
+1/4
2026年 陕西科技大学 环境学院 招收博士生(化学/材料/环境/生物 背景均可)
+1/4
电子科技大学 2026年招博士数名
+1/2
2026年博士申请考核+福州大学+管理科学与工程
+1/1
自荐:大模型ai辅助论文阅读软件:EasyReader论文易读
+1/1
广东工业大学-化学工程专业博士生招生1-2名
+1/1
2楼2011-03-16 16:51:22
3楼2011-03-18 12:15:11
zhengbiju1833(金币+5, 翻译EPI+1): 挺好,你继续翻译吧。都翻译完。金币都归你 2011-03-18 18:52:17
|
先翻两段试试,如果LZ觉得好久继续,不好的话就此打住。 TCO(透明导电氧化物)是能带很宽的半导体化合物,电导率为XXX。它们的高电导率是通过氧空穴掺杂或外部掺杂而获得的,如果没有掺杂,它们便是非常好的绝缘体。 因为价带和导带之间能带间隙较宽,室温下不能通过热方法填充,因此TCO是极好的绝缘材料。为了解释TCO的特征,研究者已经提出了多种填充机制和模型以期解释电子迁移率。研究发现,有些迁移率特征和导带的填充过程与电子结构研究无关,如迁移率与能带的级别成比例。 |
4楼2011-03-18 12:37:33













回复此楼